ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

LES TESTS GÉNÉTIQUES

 

 

 

 

 

 

 

Les tests génétiques


Dossier réalisé en collaboration avec le Pr François Eisinger, onco-généticien et membre du comité d'éthique Inserm – Mai 2015
De nombreux tests génétiques apportent des informations relatives à la santé des individus ou à celle de leur famille. Ces tests consistent à rechercher des anomalies sur la molécule d’ADN elle-même, ou à dépister des anomalies concernant le nombre ou la forme des chromosomes. Il faut distinguer les tests qui apportent des informations sur le patrimoine génétique transmissible, présent dans toutes les cellules de l’organisme (génétique constitutionnelle), et les tests qui informent sur l’état du génome de cellules tumorales (génétique somatique). En outre, d’autres tests permettent d’obtenir des informations sur la réponse à un traitement ou sur les risques d’effets secondaires (pharmacogénomique).
Les tests de génétique constitutionnelle

Les tests de génétique constitutionnelle (ou héréditaire) reposent sur l’étude du patrimoine génétique d’une personne, le plus souvent à partir d’une prise de sang. Ils peuvent être réalisés avant la naissance (test prénatal) ou après, à n’importe quel âge (test postnatal).
En 2013, des tests concernant plus de 1 500 maladies génétiques étaient disponibles et plus de 500 000 tests postnataux de génétique constitutionnelle ont été réalisés (incluant les tests de pharmacogénomique). Toutefois, une part importante des analyses étaient consacrées à deux maladies : l’hémochromatose et la thrombophilie non rare.
 
Une pratique encadrée par la loi de bioéthique
 
Des règles de bonne pratique concernant l’utilisation de ces tests et l’information à délivrer aux patients et à leur famille sont prévues par la loi de bioéthique et recommandées par l’Agence de biomédecine et la Haute autorité de santé.
 
En France, ces tests sont toujours effectués dans un cadre médical, avec une consultation en génétique permettant d’éclairer le patient et sa famille sur l’intérêt du test et sur les conséquences éventuelles de son résultat (risque pour la descendance, pronostic vital menacé, suivi thérapeutique à mettre en place, interruption médicale de grossesse...).
Ces tests sont envisagés dans trois situations :
Le diagnostic de maladies génétiques
Un test génétique diagnostic est effectué en cas de symptôme pouvant évoquer une maladie génétique. Le test est alors associé à des examens complémentaires et permet souvent de mettre fin à l’errance diagnostique. La rapidité et les chances de succès du test varient en fonction du nombre de modifications génétiques, et surtout de gènes associés à la maladie : ces tests sont utilisés pour le diagnostic de maladies monogéniques (liées à des anomalies affectant un seul gène), dont le gène causal est identifié (mucoviscidose, hémochromatose héréditaire ou encore polypose colique familiale).
Les tests génétiques diagnostics peuvent être pratiqués chez des enfants et des adultes, mais également chez des fœtus si l’anomalie recherchée a déjà été identifiée chez un parent ou si une symptomatologie évoquant un trouble génétique a été dépistée au cours du développement fœtal, comme en cas de trisomie 21. En 2012, des tests génétiques prénataux ont été réalisés chez plus de 41 000 fœtus.
Génétique prénatal : l’analyse de l’ADN fœtal circulant dans le sang maternel change la donne
 
Il est désormais possible d’analyser des fragments d’ADN fœtal présents dans le sang de la mère et récoltés à partir d’une simple prise de sang chez cette dernière. Cette pratique constitue un progrès important car elle évite des prélèvements invasifs et leurs risques.
 
Deux tests sont déjà proposés en routine avec cette méthode : la détermination du sexe de l’enfant dans le cadre d’un diagnostic prénatal de maladies associées au chromosome X et la détermination du rhésus fœtal lorsque la mère est rhésus négatif. Le dépistage de la trisomie 21 par cette technique commence également à être proposé à certaines femmes et le nombre d’indications devrait rapidement progresser. Toutefois, l’Agence de biomédecine se dit vigilante sur le plan éthique, compte tenu des dérives possibles à venir, liées à la facilité d’analyse de l’ADN fœtal par cette méthode.
Des tests génétiques peuvent également être effectués chez des personnes ne présentant aucun symptôme, mais ayant un risque d’être porteurs d’une mutation associée à une maladie grave et désirant concevoir un enfant. Le résultat du test permet alors d’évaluer le risque de transmettre la maladie à sa descendance.
Le diagnostic préimplantatoire
 
Un couple susceptible de transmettre une maladie génétique grave à sa descendance peut demander un test génétique préimplantatoire. Ce test consiste à rechercher l’anomalie génétique dans le génome d’embryons conçus par fécondation in vitro, avant implantation dans l’utérus de la mère.
 
La maladie recherchée doit présenter un risque élevé de transmission (25 à 50% de risque), être grave et incurable. Des dizaines de maladies répondent à ces critères.
 
L’Agence de biomédecine suit l’activité des laboratoires effectuant des diagnostics préimplantatoires en France, à Paris, Montpellier, Strasbourg ou encore Nantes. En 2012, 464 couples ont été éligibles à un diagnostic préimplantatoire et 91 enfants sont nés après sélection d’embryons sains.
Le diagnostic de maladies pré-symptomatique (tests prédictifs)
Pour les maladies monogéniques :
Les tests génétiques prédictifs sont effectués chez des personnes qui ne présentent aucun symptôme, afin de prédire le risque de développer ultérieurement une maladie. Ces tests peuvent être hautement prédictifs : dans le cas de la maladie de Huntington, par exemple, la mutation cherchée est une condition nécessaire et suffisante pour développer la maladie.
Pour les maladies multifactorielles :

Il existe des tests prédictifs en cancérologie, notamment proposés lorsqu’une mutation a déjà été identifiée dans la famille. Ces tests apportent une indication concernant le risque de développer la maladie, mais en aucun cas une certitude : les facteurs environnementaux et personnels contribuent largement à la survenue d’un cancer, et les mutations génétiques recherchées lors de ces tests ne sont ni nécessaires, ni suffisantes à l’apparition d’un cancer.
Ainsi, lorsqu’une personne est porteuse d’une mutation sur le gène BRCA1 ou le gène BRCA2, son risque de développer un cancer du sein avant 70 ans est de 40 à 85%, alors qu’il est de 10% dans la population générale. Concernant le cancer de l’ovaire, le risque est de 10 à 60%, contre 1% dans le reste de la population. L’identification de cette susceptibilité permet une surveillance plus précoce et plus rigoureuse des sujets à risque (l’ablation des seins est parfois choisie par les patientes et l’ablation des ovaires recommandée en fonction de l’âge et du projet parental). De même, un test de susceptibilité aux cancers colorectaux héréditaires sans polypose(HNPCC ou syndrome de Lynch) est également disponible. Les personnes présentant une mutation de l’un des gènes de la famille MMR ont 40 à 70% de risque de développer un cancer colorectal avant l’âge de 70 ans.
D’autres tests sont disponibles pour des cancers du rein, des cancers plus rares comme le rétinoblastome, ou encore des néoplasies endocriniennes… Le nombre de tests prédictifs en cancérologie devrait progresser dans les années à venir, en raison de la découverte permanente de nouveaux gènes de susceptibilité associés aux différents cancers. A terme, la possibilité d’effectuer ces tests devrait s’ouvrir au plus grand nombre compte tenu des progrès techniques et de la baisse des coûts. Mais ils devront toujours être réalisés dans le cadre d’un conseil médical et d’une information préalable sur les conséquences possibles en fonction des résultats.
Pour d’autres maladies multifactorielles ayant une composante génétique, comme l’asthme, le diabète ou bien d’autres, aucun test génétique prédictif n’est disponible à ce jour. Plusieurs gènes de susceptibilité à ces maladies ont pourtant été découverts au cours des dernières années. Mais la valeur prédictive des variants identifiés est beaucoup trop faible pour avoir une signification clinique sur le risque de développer la maladie. Cette situation pourrait néanmoins évoluer dans le futur, par exemple en associant plusieurs variants génétiques et en intégrant des données biologiques pour augmenter la valeur prédictive du test.
Quand un test prédictif peut-il être considéré pertinent ?
 
Le centre de contrôle et de prévention des maladies américain (CDC) a proposé des règles, réunies au sein d’un modèle ACCE (validité Analytique, validité Clinique, utilité Clinique et respect de l’Ethique), qui permettent d’évaluer la pertinence de développer un nouveau test génétique.
 
Les critères fixés assurent que le test est réellement prédictif d’une maladie et que la valeur prédictive est satisfaisante. Le doublement du risque d’apparition de la maladie dans les années qui suivent est souvent considéré comme une valeur acceptable, mais ce seuil peut varier selon la gravité de la maladie et les conséquences pour le patient. En outre, le test doit être utile : un diagnostic positif doit pouvoir déclencher une prise en charge adaptée. En cancérologie, les tests permettent par exemple de renforcer la prévention ou le dépistage. Il existe toutefois des exceptions à cette règle : dans le cas de la maladie de Huntington un test génétique prédictif est disponible alors qu’il n’existe actuellement aucun moyen de prévenir le développement de la maladie ou de la traiter. Mais dans ce cas particulier et quelques autres, les patients évoquent le droit de savoir.
 
La pertinence d’un test génétique prend également en compte le respect de la dimension éthique, avec par exemple la nécessité d’une fin médicale (et non eugénique).
Les tests de pharmacogénétique
La pharmacogénomique consiste à étudier les caractéristiques génétiques d’un individu pour prédire la réponse de son organisme à un médicament : effets secondaires, risques de surdosages, ou encore inefficacité.
Ces tests permettent de détecter des variants génétiques associés à l’assimilation ou au contraire à la transformation/dégradation du médicament. En 2013, une trentaine de tests étaient disponibles. L’un d’eux permet par exemple de prédire la toxicité au traitement par 5-FU (chimiothérapie) en cas de cancers colorectaux ou du sein. Plus de 3 500 personnes en ont bénéficié en 2013. Autre exemple, un polymorphisme du gène HLA est associé à une hypersensibilité à l’abacavir, un antirétroviral utilisé contre le VIH.
La pharmacogénétique n’en est qu’à ses débuts : grâce à l’analyse des données génétiques des patients inclus dans les essais cliniques, les laboratoires pharmaceutiques développent de plus en plus souvent des tests génétiques associés à la réponse ou à la toxicité d’un traitement.
Comment sont effectuées les analyses génétiques ?
Deux principales approches d’analyses du génome sont utilisées dans le cadre des tests génétiques :
*         La génétique moléculaire, qui consiste à analyser la molécule d’ADN pour détecter des mutations ou autres anomalies de façon ciblée sur le génome. Elle fait appel à des techniques de biologie moléculaire.
*         La cytogénétique, qui consiste à étudier le nombre et la forme des chromosomes pour détecter des remaniements affectant des fragments chromosomiques ou des chromosomes entiers. Le plus souvent, cette étude s’appuie sur l’observation du caryotype du patient, correspondant à la photographie de l’ensemble de ses chromosomes. C’est l’analyse la plus répandue chez les fœtus, avec près de 41 000 caryotypes réalisés en 2012.

Institut de génétique et de biologie moléculaire et cellulaire, Illkirch
Ces deux approches sont de plus en plus perméables, notamment de part l’utilisation croissante d’outils communs tels que les puces à ADN. Environ 14 000 tests ont été effectués avec puces à ADN en 2013 en France, et l’utilisation de cet outil devrait croître dans les années à venir. Cette technique associe l’aspect global du caryotype et la haute résolution de l’hybridation ciblée de la génétique moléculaire. Les puces à ADN permettent de détecter des remaniements chromosomiques cent fois plus petits que ne le permettait jusque-là le caryotype. Dès lors, le risque devient celui de découvrir une autre maladie que celle recherchée… Le comité d’éthique de l’Inserm se penche actuellement sur cette question : que faire d’une information importante pour la santé découverte de façon fortuite, que l’individu n’a pas demandé à savoir et n’est pas forcément désireux d’entendre ?
 
Les tests en vente sur internet et leurs dangers
 
Des tests génétiques sont vendus directement par internet par des sociétés extérieures au système de santé. Les tests proposés ne sont pas forcément validés et ces services sont souvent proposés sans aucune intervention de professionnels de santé. Ce manque constitue un risque de désinformation majeure sur les conséquences possibles des résultats, dans un sens ou dans l’autre. Un conseil en génétique est absolument fondamental pour encadrer toute réalisation de test génétique.
Il existe 229 laboratoires de génétique constitutionnelle postnatale en France. Leur activité est suivie par l’Agence de biomédecine, en collaboration avec Orphanet (portail de référence sur les maladies rares et les médicaments orphelins, coordonné par l’Inserm). Parmi eux, 200 pratiquent des tests de génétique moléculaire et 111 des tests de cytogénétique. Pour 60% des maladies qui bénéficient d’un test génétique (environ 880 sur 1 500), le diagnostic génétique est complexe et nécessite l’expertise d’un laboratoire particulier en France.
Les tests de génétique somatique
Les tests de génétique somatique (non héréditaire) consistent à analyser le génome des cellules cancéreuses pour détecter des mutations survenues spécifiquement dans la tumeur et prédire la réponse à un traitement ciblé. On parle de « test compagnon ». Ils sont réalisés à partir d’une biopsie (ou d’une prise de sang pour les cancers hématopoïétiques), dans l’une des 28 plateformes de génétique moléculaire réparties sur tout le territoire français et rattachées à des établissements hospitaliers.
En 2011, 55 000 patients atteints de cancer ont bénéficié d’un de ces tests en vue d’utiliser l’un des 14 traitements spécifiques d’une anomalie génétique disponibles. Parmi ces patients, 20 000 étaient atteints d’un cancer du poumon et ont bénéficié de la recherche des mutations du gène EGFR, biomarqueurs de la sensibilité au gefitinib.

Détection d'anomalies chromosomiques tumorale
Compte tenu de l’arrivée massive de traitements ciblés en cancérologie, ces tests sont amenés à largement se développer. Plusieurs programmes de recherche clinique sont en cours en France, comme SHIVA à l’Institut Curie, MOSCATO à l’Institut Gustave Roussy, ou encore le programme AcSé coordonné par l’Institut national du cancer pour tester la faisabilité d’un séquençage du génome tumoral en routine, afin de permettre au plus grand nombre de patients possible de bénéficier de traitements ciblés.

 

  DOCUMENT      inserm     LIEN
 

 
 
 
 

THÉRAPIE GÉNIQUE

 

Thérapie génique


Dossier réalisé en collaboration avec Anne Galy, directeur de recherche à l’Inserm (unité 951 Inserm / université d'Evry Val d'Essonne / Ecole pratique des hautes études, "Immunologie moléculaire et biothérapies innovantes", Généthon, Evry) - Mars 2014.
La thérapie génique utilise des acides nucléiques (ADN ou ARN) pour soigner ou prévenir des maladies. Selon la pathologie, cet objectif peut être atteint en délivrant aux cellules un gène fonctionnel qui remplace le gène défectueux à l’origine de la maladie (transgène), un gène à action thérapeutique, ou encore de l’ARN capable de réguler ou bloquer partiellement l’expression d’un gène altéré. Ces acides nucléiques sont le plus souvent transportés dans les cellules du patient grâce à un vecteur viral, mais ils peuvent également être injectés directement dans les cellules, sous forme d’ADN nu.

Cellule hématopoïétique corrigée par tranfert de gène.
Le concept de thérapie génique date des années 1950 mais il s’est réellement concrétisé dans les années 90, avec les premiers essais conduits chez l’homme. En 1995, le premier patient traité de façon stable grâce à l’injection de cellules souches et de lymphocytes génétiquement modifiés (par une équipe milanaise) était atteint d’immunodéficience sévère de type ADA DICS. Un premier pas, transformé dans les années 2000 par un succès thérapeutique éclatant, obtenu à l’hôpital Necker chez les patients atteints d’une autre forme de déficit immunitaire (DICS de type X1) (voir plus loin). A l’époque, la thérapie génique était souvent présentée comme un moyen de lutter contre des maladies monogéniques (liée à la dysfonction d’un seul gène), en délivrant un gène "sain" capable de suppléer le gène "malade". En réalité, les indications sont beaucoup plus larges : plus de 1 800 essais cliniques de thérapie génique sont en cours à ce jour, dont 65 % en cancérologie, 10 % dans le domaine cardiovasculaire et 10 % seulement dans celui des maladies monogéniques (en particulier des immunodéficiences et des maladies hématologiques, mais également des pathologies comme la mucoviscidose). D’autres essais concernent des maladies infectieuses (tétanos, sida…), neurologiques (sclérose latérale amyotrophique, la sclérose en plaques ou encore les maladies d’Alzheimer et de Parkinson), ophtalmologiques (rétinite pigmentaire, glaucome, dégénérescence maculaire liée à l’âge) ou encore dans des maladies inflammatoires comme l’arthrose ou la polyarthrite rhumatoïde.
Environ trois quarts de ces essais sont des études de phase I ou II, qui évaluent la sécurité et l’efficacité des traitements testés. Les essais de phase III (qui permettent de statuer sur le rapport bénéfice/risque d’un nouveau traitement par rapport à un traitement de référence ou à un placebo) ne représentent que 4,5 % des études cliniques en cours. Néanmoins, ce chiffre ne cesse de progresser, avec de belles promesses par exemple dans le traitement de maladies monogéniques telles que l’amaurose congénitale de Leber, l’hémophilie B, la bêta-thalassémie ou dans le traitement du cancer, par transfert de lymphocytes T génétiquement modifiés.
Deux médicaments de thérapie génique sur le marché
Deux médicaments ont déjà surmonté tous les obstacles du développement clinique et sont déjà sur le marché. L’un d’eux, Gencidine est commercialisé en Chine depuis 2004. Il est indiqué dans le traitement de carcinomes de la tête et du cou. Il s’agit d’un gène suppresseur de tumeur (p53), véhiculé par un adénovirus. Plus de 10 000 patients ont été traités par ce médicament à ce jour, sans effet indésirable notable. En Europe, le premier médicament de thérapie génique a été approuvé fin 2012. Il s’agit du Glybera, injectable par voie intramusculaire, indiqué en cas de déficit familial en lipoprotéine lipase.
L’arrivée de ce médicament sur le marché européen a marqué un tournant décisif dans ce domaine médical : la thérapie génique n’est plus seulement une stratégie expérimentale étudiée en laboratoire. Elle peut aboutir à la mise au point de médicaments commercialisables, à condition de surmonter les contraintes règlementaires et industrielles (production de vecteurs et de transgènes dans des conditions standardisées et contrôlées, évaluation précise du rapport bénéfice-risque). Ce développement ne peut se faire sans le concours d’experts médicaux et industriels.
Les techniques diffèrent en fonction des indications

Les deux principales stratégies de thérapie génique : La thérapie génique consiste à modifier génétiquement des cellules d’un patient, pour soigner ou prévenir une maladie. Les protocoles utilisés varient en fonctions des indications et des objectifs thérapeutiques. Les cellules peuvent être modifiées in vivo, directement dans l’organisme du patient, ou ex vivo. Dans le second cas, des cellules souches sont prélevées chez le patient, modifiées en laboratoire, puis réinjectées.
Les protocoles de thérapie génique varient en fonction des indications et des objectifs thérapeutiques à atteindre. Cependant, ils consistent toujours à modifier génétiquement les cellules du patients, ex vivo ou in vivo, de façon pérenne ou transitoire.
Ainsi, dans le cas d’une maladie monogénique qui affecte les cellules sanguines, des cellules souches hématopoïétiques (cellules à l’origine de l’ensemble des cellules sanguines) sont prélevées chez le patient lors d’une procédure qui s’apparente à une simple prise de sang. Ces cellules sont ensuite modifiées ex vivo : un vecteur (voir plus loin) est utilisé pour leur délivrer un transgène thérapeutique, puis elles sont placées en culture pendant quelques jours. Lorsque les cellules ainsi traitées commencent à exprimer le gène thérapeutique, elles sont finalement réinjectées au patient par perfusion veineuse. Les cellules modifiées vont alors proliférer dans l’organisme du patient et, à priori, contribuer à le soigner. L’avantage de cette approche est de modifier une population de cellules bien précise, sans risque de voir le vecteur pénétrer dans des organes non ciblés.
Cependant, il n’est pas toujours possible de prélever les cellules à corriger : cette stratégie ne peut être utilisée lorsqu’il s’agit de modifier des cellules cardiaques ou encore des neurones. Des protocoles prévoient alors l’injection du vecteur contenant le transgène directement dans les organes cibles, in vivo. Par exemple, dans le cas de l’amaurose de Leber, une dégénérescence rétinienne responsable de cécité, l’injection du vecteur contenant le transgène se fait directement dans la rétine. Avec cette stratégie, le risque est une dissémination du transgène moins maîtrisée.
Dans 2 % des essais de thérapie génique, la technique utilisée s’apparente à une chirurgie du gène : on parle de "saut d’exon". Cette approche consiste à amener la cellule à produire une version de la protéine déficiente chez le patient plus courte que la protéine normale mais fonctionnelle, en "sautant" la partie du gène qui porte la mutation à l’origine de la maladie. Le saut d’exon a été testé pour traiter la dystrophie de Duchenne chez l’animal (équipe d’Olivier Danos et Luis Garcia, Généthon, Evry), puis chez l’homme. Plusieurs essais cliniques sont en cours, notamment à l’Institut de Myologie à Paris. Cette technique s’applique particulièrement bien à cette maladie car le gène impliqué est trop grand pour être transporté par un vecteur de transfert de gène. Des applications potentielles sont envisagées dans d’autres pathologies génétiques.

Schéma de la technique du saut d'exon
Une autre approche, consistant à réparer le gène altéré directement au cœur de la cellule, est séduisante par sa précision. Elle éviterait certains effets indésirables associés au transfert d’un transgène. En pratique, cette stratégie s’appuie sur l’utilisation d’enzymes appelées "nucléases", capables de repérer des séquences particulières de l’ADN de part et d’autre de la mutation à réparer et de couper le chromosome à cet endroit précis. La machinerie cellulaire se met alors en marche pour réparer son ADN. Si une copie "saine" du gène à restaurer est alors délivrée dans la cellule, elle va servir de matrice de réparation, permettant ainsi la reconstitution d’un gène complet et fonctionnel. Cette technique fonctionne efficacement in vitro et les premiers essais conduits in vivo sont en cours. Une société française, Cellectis, est pionnière dans le domaine.
 
Le choix de l’acide nucléique thérapeutique dépend de l’indication
Dans le cadre du traitement du cancer, une piste privilégiée consiste à stimuler le système immunitaire du patient contre sa propre tumeur, de manière à faciliter la reconnaissance des cellules cancéreuses et leur élimination. Pour y parvenir, des essais ont par exemple consisté à prélever des lymphocytes T ou des cellules présentatrices d’antigènes de type dendritique chez les patients, à y introduire un gène codant pour une protéine impliquée dans la reconnaissance des cellules tumorales ou dans leur destruction (antigènes tumoraux, cytokines, gènes suppresseurs de tumeur ou encore enzymes suicides) et à réinjecter le tout dans l’organisme des patients. Les résultats sont globalement mitigés. Des améliorations restent à réaliser pour rendre les vecteurs utilisés plus immunogènes ou mieux contrôlables.
Dans le domaine cardiovasculaire, les chercheurs tentent d’utiliser la thérapie génique pour favoriser la régénération des tissus vasculaires en cas d’ischémie artérielle. Pour ce faire, ils utilisent des gènes codants pour des facteurs de croissance vasculaires. Ils essaient également de diminuer la resténose (prolifération cellulaire non souhaitée après la pose d’un stent) en injectant des produits inhibant la croissance cellulaire des parois artérielles.

Thérapie génique de l'adrénoleucodystrophie
Dans le cadre de la prise en charge des maladies monogéniques, de nombreux essais concernent les déficits immunitaires comme l’immunodéficience sévère combinée (SCID), l’immunodéficience par déficit en adénosine désaminase (ADA-SCID), le syndrome de Wiskott Aldrich ou la granulomatose septique chronique, mais également des maladies hématologiques comme l’hémophilie B ou A, l’anémie de Fanconi ou encore la bêta-thalassémie. D’autres travaux concernent les pathologies rétiniennes comme l’amaurose de Leber ou la neuropathie optique de Leber, les maladies lysosomales comme la maladie de Sanfilipo ou la maladie de Gaucher et d’autres maladies neuro-dégénératives comme l’adrénoleucodystrophie ou la leucodystrophie métachromatique. Dernier exemple, les maladies de la peau telles que l’épidermolyse bulleuse. Toutes ces pathologies sont liées au défaut de fonctionnement d’un gène unique.
Dans le cas des maladies hématologiques, plusieurs essais consistant à modifier des cellules souches ex vivo en y injectant une copie saine du gène à l’origine de la maladie, puis à les réinjecter dans le sang du patient ont montré un bénéfice durable pour les patients. Dans le futur, l’utilisation de divers types de cellules souches telles que les cellules souches pluripotentes induites, ou encore de nouvelles modalités d’ingénierie tissulaire, pourront faire partie de l’arsenal thérapeutique associé à la thérapie génique.
Dans le domaine des maladies infectieuses, un traitement curatif par thérapie génique pourrait être envisagé par exemple en cas d’infection par le VIH. Plusieurs approches sont étudiées. La première consiste à modifier les lymphocytes T4 CD4 des patients (cibles du VIH) afin de les rendre résistants au virus. A cette fin, un clinicien prélèverait des cellules souches hématopoïétiques dans le sang du patient et y ferait rentrer un gène qui rendrait ces cellules insensibles au virus (plusieurs gènes pourraient être utilisés comme le démontre des essais réalisés in vitro). Les cellules modifiées seraient ensuite réinjectées dans l’organisme du patient et conduiraient à la production de lymphocytes T4 CD4 résistants au VIH, capables de survivre et de se multiplier. Des essais conduits chez l’animal et, récemment, un essai clinique mené chez l’homme ont été publiés : les résultats sont encourageants. Dans le cadre d’une seconde approche, les chercheurs travaillent au développement de vaccins à partir de vecteurs viraux utilisés pour le transfert de gène. Des résultats encourageants en terme de protection ont été obtenus chez les primates et des essais se préparent chez l’homme.
Les vecteurs, une clé du succès de la thérapie
Pour faire pénétrer l’acide nucléique à visée thérapeutique dans les cellules du patient, on utilise un vecteur chargé d’assurer ce transport. Des virus modifiés (vecteurs viraux) sont utilisés dans plus de deux tiers des essais. Ce type de vecteurs reste la référence à ce jour.
Il existe des vecteurs viraux non réplicatifs (qui ne peuvent se multiplier), intégratifs (l’ADN du vecteur viral s’intègre dans l’ADN de l’hôte), non intégratifs (le transgène demeure dans la cellule sans s’intégrer au génome de l’hôte) et des vecteurs non viraux non intégratifs. Dans tous les cas, les vecteurs utilisés font l’objet d’une ingénierie importante pour annuler leur potentiel toxique et, lorsque cela est nécessaire, pour les rendre les plus silencieux possibles vis-à-vis du système immunitaire de l’hôte afin de permettre une correction thérapeutique à long terme.

Institut du thorax UMR 915
Les débuts de la thérapie génique ont été marqués par des accidents liés à l’utilisation de vecteurs viraux qui ont pénétré dans des organes non cibles, ou qui ont provoqué l’intégration du transgène dans des séquences dites "pro-oncogènes" du génome du patient, déclenchant des cancers voire des décès. Ces accidents ont incité les chercheurs à explorer le fonctionnement précis de ces vecteurs viraux, la façon dont ils intègrent leur ADN dans les chromosomes de l’hôte... Ces connaissances ont beaucoup contribué au développement de la thérapie génique, grâce à la mise au point de vecteurs plus sûrs et plus efficaces. L’avènement des techniques "à haut débit" pour le séquençage des génomes et l’analyse des séquences obtenues a constitué une avancée indispensable dans ce secteur.
Les vecteurs viraux intégratifs insèrent leur ADN (qui contient le transgène thérapeutique) dans le génome de l’hôte. En conséquence, le gène thérapeutique est transmis aux cellules filles en cas de divisions cellulaires. Ces vecteurs sont idéaux en cas de thérapie cellulaire et de thérapie génique utilisant des cellules souches, ainsi que dans les approches où l’effet recherché doit être permanent.
Parmi les vecteurs viraux intégratifs, les rétrovirus ont été beaucoup utilisés dans les années 2000, mais le recours à cette famille de vecteurs viraux déclinent peu à peu : aujourd’hui moins de 20 % des essais en cours les utilisent. Ils ont en effet été impliqués dans la survenue de leucémies lors des essais menés sur les "enfants bulles" dans les années 2000. Ces virus sont désormais mieux connus et maitrisés, de sorte à réduire le risque d’insertion aléatoire dans le génome de l’hôte. Une fonction d’ "auto-inactivation" empêche notamment le virus de déclencher l’expression inopportune d’un gène proche du site où il s’est inséré.
Mais pour palier ce risque d’insertion aléatoire, les chercheurs utilisent de plus en plus souvent des lentivirus. Ceux-ci semblent en effet avoir un profil d’intégration génomique plus sûr que celui des rétrovirus. Par ailleurs, les lentivirus pénètrent bien dans des cellules qui ne se divisent pas comme les neurones ou les cellules hépatiques (alors que les rétrovirus s’y insèrent mal). Ces virus sont dérivés de virus humains comme le VIH, mais ils sont modifiés de manière à être inoffensifs. Des essais ont été menés grâce à ces vecteurs dans le traitement de l'adrénoleucodystrophie (par l’équipe de Nathalie Cartier et Patrick Aubourg, unité Inserm 986, Kremlin-Bicêtre) ou encore dans le traitement d'hémoglobinopathies (par l’équipe de Philippe Leboulch et Yves Beuzard, à Paris), en collaboration avec le Centre d’investigation clinique intégré en biothérapie de l’hôpital Necker (Paris). Par ailleurs, compte tenu du potentiel de ces vecteurs et grâce au travail de l’équipe d’Anne Galy (unité Inserm 951, Evry), le Généthon a mis en place une production industrielle de vecteurs lentiviraux et collabore avec de nombreuses équipes internationales qui les utilisent, notamment pour le traitement du syndrome de Wiskott-Aldrich.
Quand il s’agit de faire pénétrer un transgène dans des cellules qui ne se divisent pas, les vecteurs non intégratifs sont privilégiés car ils sont considérés comme plus sûrs. Avec ces vecteurs, le transgène reste dans la cellule de l’hôte, mais sans s’insérer dans son génome. Il s’exprime pendant la durée de vie de la cellule et disparaît avec la mort de celle-ci. Les adénovirus ont été très utilisés dans le passé mais leur usage tend à diminuer, notamment pour le traitement des maladies monogéniques. Ils restent cependant des vecteurs de choix en immunothérapie contre le cancer. Ils peuvent transporter de plus grandes séquences d’ADN que les virus intégratifs, même si la taille maximale des transgènes transportés reste parfois inférieure à celle de gènes humains. Ce type de vecteurs présente plusieurs avantages : il pénètre bien dans les cellules qui ne sont pas en division et il est associé à un niveau élevé d’expression du gène vectorisé.

Les vecteurs dérivés de virus adéno-associés (ou AAV) permettent le transfert de petites séquences génétiques (seulement 4 kilobases contre 13 kilobases avec les lentivirus). Ils sont intéressants car peu inflammatoires. Ils sont de plus en plus utilisés, par exemple pour le traitement de l’amaurose de Leber. Le seul médicament de thérapie génique autorisé en Europe (Glybera) utilise d’ailleurs ce type de vecteur.
En parallèle, la mise au point de vecteurs non viraux se poursuit afin de répondre à deux problématiques : une meilleure sécurité des vecteurs et le transport de grandes quantités d’ADN. A ce titre, près de 20 % des essais de thérapie génique se fondent sur l’injection directe d’ADN nu modifié et protégé des enzymes cellulaires (nucléases) grâce à des modifications chimiques. Une autre stratégie est la lipofection : le gène thérapeutique est associé à des lipides cationiques qui favorisent son entrée dans la cellule hôte.
Des succès majeurs à retenir
La France est un des leaders mondiaux de la thérapie génique, tant au niveau académique qu’au niveau clinique, en particulier grâce à des équipes attachées à l’Inserm.
En 1999, des équipes françaises (Salima Hacein-Bey Abina, Marina Cavazzana et Alain Fischer, unité Inserm 768, hôpital Necker, Paris), en collaboration avec des équipes anglaises, ont été pionnières dans le traitement par thérapie génique des "bébés bulles" (atteints de SCID X1). Malgré la survenue de plusieurs cas de leucémies chez les 19 patients inclus, les effets thérapeutiques du traitement persistent encore. Sur les 9 enfants traités en France il y a plus de 10 ans, 8 sont vivants, à domicile, et suivent une scolarité normale. Sans ce traitement, leur espérance de vie était très limitée.

Alain Fischer, Unité Inserm 768, "Développement normal et pathologique du système immunitaire", Département de Biothérapies et Unité d’Immunologie et d’Hématologie pédiatrique, Hôpital Necker Enfants Malades AP-HP, Université Paris Descartes, Paris
L’amaurose de Leber a également fait l’objet d’essais aux résultats remarquables. La maladie correspond à une dégénérescence pigmentaire au niveau de la rétine pouvant conduire à la cécité. Elle est causée par une mutation affectant le gène RPE65. L’injection d’un vecteur de type AAV contenant une copie fonctionnelle de ce gène, directement dans la rétine, a permis de stopper l’évolution de la maladie et de préserver la vision qui restait aux patients. Les premiers essais réussis ont eu lieu en Angleterre et aux Etats-Unis en 2007. Un essai est actuellement en cours à Nantes (équipe de Fabienne Rolling et Philippe Moullier, unité Inserm 1089, Nantes). Une société américaine vient d’être créée pour développer cette stratégie (Spark Therapeutics) et une autre existe en France, GenSight, fondée par José-Alain Sahel, directeur de l’Institut de la Vision (unité Inserm 968), à Paris.
L’adrénoleucodystrophie, une maladie génétique neurodégénérative liée à une démyélinisation du système nerveux central, a également fait l’objet de travaux prometteurs. Un essai a été mené chez quatre enfants en 2009, par des équipes françaises (Nathalie Cartier et Patrick Aubourg, unité Inserm 986, Kremelin-Bicêtre), en collaboration avec une société biotechnologique américaine et avec l’hôpital Necker (Paris). La stratégie utilisée consiste à prélever des cellules souches de la moelle osseuse (cellules souches mésenchymateuses), à les corriger génétiquement ex vivo à l’aide d’un lentivirus, puis à les réinjecter dans la circulation sanguine. Le traitement a permis de stopper l’évolution de la maladie chez ces enfants qui mènent aujourd’hui une vie pratiquement normale. Cet essai a ouvert la voie au développement de cette stratégie pour de nombreuses autres maladies neurodégénératives. Un résultat tout à fait spectaculaire vient notamment d’être obtenu par une équipe italienne (Alessandra Biffi et Luigi Naldini, à Milan) chez des enfants atteints de leucodystrophie métachromatique, une autre maladie génétique neurodégénérative. D’autres approches sont également en cours de développement dans le traitement de maladies lysosomales comme la maladie de Sanfilippo, avec par exemple les travaux menés par Jean-Michel Heard à l’Institut Pasteur (unité 1115 Institut Pasteur/Inserm), Marc Tardieu à l’hôpital Bicêtre et Michel Zerah à l’hôpital Necker, à Paris.
 

Un essai lancé en 2010 a en outre montré l’efficacité de la thérapie génique pour le traitement de l’hémophilie B. Il s’agit cette fois d’un protocole anglo-américain (équipe d’Amit Nathwani, à Londres). Les chercheurs ont utilisé un vecteur AAV contenant un gène FIX, capable de restaurer la coagulation sanguine. Six patients ont été inclus. Le gène s’est exprimé chez tous les participants et a permis aux quatre d’entre eux (qui avaient reçu les doses de vecteur les plus fortes) d’interrompre leur traitement prophylactique contre les hémorragies spontanées. Le suivi à long terme devra confirmer la sécurité du traitement et la persistance de l’effet thérapeutique dans le temps.
Les personnes atteintes de bêta-thalassémie, une forme majeure d’anémie, pourraient également être, à l’avenir, traitées par thérapie génique à en croire les résultats d’un essai français mené en 2010 (équipe de Philippe Leboulch et Marina Cavazzana à Paris). Il s’agissait d’un essai pionner qui a permis de soigner un patient âgé de 18 ans. Une première mondiale. Ce patient a été transplanté avec ses propres cellules hématopoïétiques CD34 corrigées ex vivo grâce à un lentivirus pour qu’elles expriment un transgène bêta-globine. Le jeune homme a retrouvé une vie normale, sans recours à des transfusions sanguines mensuelles.
Dans le domaine du cancer, les résultats sont plus aléatoires mais certains travaux sont encourageants. Une équipe américaine a par exemple prouvé, en 2010, l’efficacité de cellules T modifiées pour le traitement de leucémies (équipe de Carl June et Bruce Levine, à Philadelphie). Les chercheurs ont utilisé un vecteur lentiviral de type HIV-1 car il s’intègre naturellement dans les lymphocytes T. Ce vecteur a permis le transfert de gènes codant pour des protéines qui facilitent la reconnaissance des cellules tumorales à les éliminer. La société Novartis a investi dans le secteur et plusieurs start-up se sont créées, telles que Juno Therapeutics à Seattle.
Le secteur industriel, autour de la thérapie génique et les filières de service associées, se développe dans le monde et en France. Plusieurs personnalités de la recherche française rattachées à l’Inserm ont été pionnières dans ces démarches : Citons par exemple David Klatzmann avec la création de Genopoietic en 1993, mais également Pierre Charneau avec Theravectys, David Sourdive avec Cellectis, Philippe Leboulch avec Bluebird bio ou encore récemment José-Alain Sahel avec la fondation de GenSight Biologics en 2012. L’AFM Téléthon a par ailleurs investi depuis de nombreuses années dans la thérapie génique. Et Généthon BioProd, le premier établissement pharmaceutique à but non-lucratif dédié à la fabrication de médicaments de thérapie cellulaire et génique, a récemment ouvert à Evry.

   DOCUMENT      inserm     LIEN


 
 
 
 

Utiliser un virus pour parasiter autrui

 

 

 

 

 

 

 

Utiliser un virus pour parasiter autrui
J-M. Drezen, M. Poirié, Y. Bigot et G. Periquet dans mensuel 296
daté mars 1997 -

De très nombreux insectes, et notamment certaines guêpes, ont développé des stratégies parasitaires élaborées aux dépens d'autres insectes, particulièrement les papillons. Pour contourner la défense immunitaire de leurs hôtes, ils ont mis au point des procédés permettant de manipuler la physiologie de l'hôte. Beaucoup de ces procédés recourent Ñ situation exceptionnelle dans le monde animal Ñ à des virus, dans de véritables symbioses. Le parasitisme prend ainsi une forme à trois étages où seul l'hôte est perdant. Dans certains cas, les gènes des virus se comportent comme des gènes de la guêpe parasite, qu'elle transmet à ses descendants. Il reste à expliquer quels scénarios évolutifs ont pu conduire à ces associations extraordinaires.

Dans le film fantastique Alien de Ridley Scott, les héros sont décimés par des créatures extraterrestres monstrueuses dont les larves détruisent en quelques jours le corps humain. Ce type d'aventure est monnaie courante sur Terre sous forme de relations hôte-parasite agressives, mais fort heureusement elles restent limitées au monde des invertébrés et en particulier à celui des insectes. Parmi ceux-ci, l'ordre des hyménoptères qui compte plus de 300 000 espèces dont les abeilles, les guêpes et les fourmis a particulièrement développé les stratégies parasitaires puisque la moitié des familles qui le constituent comprennent exclusivement des espèces parasites. Comment s'établissent les relations entre les insectes hôtes et les hyménoptères qui les parasitent, et comment évoluent-elles ?

Les hyménoptères « endoparasites » sont des guêpes qui effectuent la totalité de leur développement embryonnaire et larvaire à l'intérieur du corps d'autres insectes, qu'elles utilisent comme réserve de nourriture. Ce type de stratégie a été très productif sur le plan évolutif, puisque plusieurs dizaines de milliers d'espèces sont répertoriées dans ce groupe. Ces espèces parasitent à peu près toutes les familles d'insectes, souvent de manière étroitement spécialisée, c'est-à-dire qu'elles ne parasitent qu'une espèce particulière. Des individus aussi petits que les pucerons ou aussi difficiles à atteindre que les larves d'insectes xylophages vivant à l'intérieur du bois, sont victimes d'hyménoptères endoparasites spécialisés. Cependant, de nombreux hôtes parasités appartiennent à l'ordre des lépidoptères les papillons et les relations entre lépidoptère hôte et hyménoptère parasite sont de loin les plus étudiées.

Pour un endoparasite, le corps de l'hôte constitue un garde-manger qu'il doit maintenir en bon état de conservation jusqu'à la fin de son propre développement. Cependant, il est aussi un environnement hostile. En effet, l'existence chez les insectes d'un système immunitaire complexe ne fait aujourd'hui plus aucun doute1. Les oeufs du parasite doivent donc échapper aux mécanismes de défense de l'hôte et notamment à l' « encapsulation » formation d'une capsule autour de l'oeuf empêchant son développement. Pour parvenir à ce résultat, les hyménoptères endoparasites ont développé des procédés de manipulation de la physiologie de leur hôte. D'un point de vue évolutif, l'originalité de certains de ces procédés est qu'ils font intervenir des particules virales. Nous allons comparer plusieurs exemples de ces relations à trois partenaires, hôte, parasite et virus.
Pour pondre, les guêpes endoparasites utilisent leur tarière, une longue aiguille creuse située à l'extrémité de l'abdomen, qui perce la cuticule de l'hôte sans l'endommager. Les oeufs sont alors expulsés sous pression par le canal interne de l'aiguille et parviennent dans les tissus de l'hôte. Le fluide génital, liquide qui permet notamment l'expulsion des oeufs, est également injecté. Il s'agit d'une sécrétion complexe contenant un cocktail de substances qui jouent un rôle dans la suppression de la réponse immunitaire de l'hôte, la perturbation de son développement et la modification de son comportement2.

Ces substances peuvent être classées en trois catégories suivant leur origine. Elles comprennent des « venins » produits par des glandes qui déversent leur contenu dans le tractus génital, des protéines à action immunosuppressive sécrétées par l'épithélium ovarien, et enfin des virus qui participent à la modification de la physiologie de l'hôte.
La description de l'influence exercée par les différents facteurs provenant du parasite sur la régulation de l'hôte pourrait faire l'objet à elle seule de plusieurs articles. Nous nous limiterons ici à l'aspect le plus original de ces interactions hôte-parasite, le rôle des facteurs viraux. En effet, la présence chez l'hyménoptère de particules virales injectées lors du parasitisme peut prendre la forme d'une asso-ciation guêpe-virus plus ou moins étroite pouvant aller jusqu'à la symbiose. Ces relations guêpe-virus sont le seul exemple connu où l'évolution a conduit à une association symbiotique entre un virus et un organisme eucaryote. La présence de particules virales a été mise en évidence par microscopie électronique dans le tractus génital de nombreuses espèces d'hyménoptères endoparasites ou dans les glandes à venin qui y débouchent. Dans plusieurs cas, il a pu être montré que ces particules se répliquent en fait dans un épithélium spécialisé des ovaires. Les virus identifiés appartiennent à différents groupes et n'induisent généralement pas de pathologie perceptible chez l'hyménoptère3. La présence de virus dans l'appareil génital des hyménoptères femelles trouve probablement son origine dans le comportement de ces dernières. En effet, en piquant leur tarière dans un hôte infecté, pour pondre ou pour s'alimenter, elles peuvent être contaminées et transmettre le virus aux insectes piqués par la suite. Les virus trouvent un avantage à pouvoir se maintenir ou même se multiplier dans le tractus génital des hyménoptères puisqu'ils peuvent ainsi maximiser le nombre d'hôtes infectés.

Il existe une catégorie de virus, les ascovirus virus à ADN, pour laquelle l'utilisation des hyménoptères comme vecteurs constitue probablement la principale voie de transmission dans les populations d'insectes. Ces virus, découverts par le groupe de Brian Federici à l'université de Riverside, en Californie, sont létaux pour les larves des lépidoptères qu'ils infectent. Le virus dissout les tissus de l'insecte en un liquide d'aspect laiteux tout à fait caractéristique de cette pathologie4.
Contrairement à d'autres virus d'insectes, les ascovirus sont peu infectieux par ingestion, ce qui montre que ce n'est pas leur voie naturelle d'infection. Cependant, ils se montrent très infectieux s'ils sont introduits directement dans la chenille à l'aide d'une aiguille préalablement contaminée. Cela suggère que les ascovirus utilisent des insectes piqueurs en tant que principal mode de dissémination dans les populations de papillons. De fait, les chenilles infectées par un ascovirus sont le plus souvent également parasitées par un hyménoptère. Les ascovirus n'induisent pas de pathologie visible chez les guêpes qui leur servent de vecteurs. Par contre, l'infection d'une chenille hôte entraîne indirectement la mort de la larve du parasite. En effet lorsqu'un hyménoptère parasite une chenille, le virus injecté élimine le papillon infecté et, par contrecoup, la descendance du parasite vecteur. Cependant, dans certaines espèces, le parasite a trouvé le moyen de s'accommoder de l'infection virale : le système a évolué vers un état d'association stabilisée.

Il en est ainsi pour l'un des modèles biologiques que nous étudions, une guêpe nommée Diadromus pulchellus qui parasite la chrysalide d'un lépidoptère, la teigne du poireau. Cette guêpe héberge un ascovirus qui est systématiquement injecté dans l'hôte lors de la ponte. Le virus se maintient dans les tissus de l'hyménoptère mais n'y est pas produit en grande quantité. Il ne se montre pas pathogène pour cette espèce. En revanche, après son injection dans la chrysalide hôte, l'ascovirus entraîne la Iyse destruction des cellules de ses différents tissus. La caractéristique intéressante de ce modèle est la suivante : lorsque le virus est injecté avec l'oeuf du parasite, la Iyse des tissus de la chrysalide se produit beaucoup plus lentement que si le virus est introduit seul, à l'aide d'une aiguille contaminée. Ce délai permet à la larve du parasite de consommer les tissus de l'hôte avant leur désagrégation totale et d'achever ainsi son développement. L'ascovirus élimine donc l'hôte mais non la descendance de l'hyménoptère vecteur. Ces observations montrent que Diadromus pulchellus a développé, au cours de l'évolution, des mécanismes permettant de ralentir le cycle du virus dans l'hôte. Il peut ainsi utiliser à son profit la lyse des tissus de l'hôte induite par l'ascovirus. De son côté, l'ascovirus n'est pas perdant. Il a en effet avantage à être véhiculé par la guêpe pour infecter le plus grand nombre de chrysalides possibles. De fait, tous les individus des populations de Diadromus hébergent des ascovirus. La modification de la durée du cycle viral dans la chrysalide de papillon parasité est donc due à des mécanismes qui ont pu être sélectionnés chez la guêpe pour permettre son développement larvaire dans l'hôte en présence de l'infection virale, mais également chez le virus lui-même pour éviter la disparition de la population d'hyménoptères vecteurs.

Cette association Diadromus ascovirus pourrait en fait être plus étroite qu'il n'y paraît. Comme cela a été décrit pour d'autres systèmes biologiques, la présence du virus pourrait également permettre à la guêpe de contourner les défenses immunitaires de l'hôte en perturbant sa physiologie par le biais de l'infection. Cependant, il est difficile de tester l'existence de cet avantage conféré à la guêpe par l'ascovirus car le génome viral Ñ une molécule d'ADN circulaire de 150 kilobases Ñ se trouve dans toutes les cellules des guêpes des deux sexes et l'on ne peut donc évaluer le succès parasitaire en l'absence de virus. En conclusion, nous observons ici une étape importante dans l'évolution de l'association virus-hyménoptère mais il est clair que l'on n'est pas en présence d'une symbiose. L'ascovirus a conservé son autonomie et peut se transmettre en utilisant occasionnellement les individus d'autres espèces d'hyménoptères. Il se comporte alors comme un ascovirus « classique » entraînant l'échec du parasitisme.

Plusieurs espèces de guêpes ont développé des associations avec des virus plus étroites encore que celle décrite ci-avant. Le virus y perd toute autonomie et a été transformé en une véritable arme de combat biologique, utilisée par la guêpe pour modifier la physiologie de l'hôte. Ces entités virales très particulières ont été découvertes par le groupe de Donald Stoltz de l'université d'Halifax, au Canada, et sont nommées « polydnavirus », en référence à leur génome, qui est composé de plusieurs dizaines de molécules circulaires d'ADN double brin. Tous les polydnavirus identifiés à l'heure actuelle sont associés à des espèces appartenant à deux familles apparentées d'hyménoptères : les ichneumonidés et les braconidés.
Dans le cas du parasitisme d'un papillon, le sphinx du tabac Manduca sexta, par la guêpe Cotesia congregata, modèle que nous étudions en collaboration avec le groupe de Nancy Beckage de l'université de Californie, les particules virales sont produites dans la guêpe par des cellules spécialisées situées à la base de l'ovaire, dans un renflement appelé le calice. Puis les virus sont libérés dans la lumière de l'ovaire, en quantité très importante. Lors de la ponte, les virus présents dans le fluide génital sont injectés dans le corps de l'hôte. Le génome viral pénètre ensuite dans de nombreux types cellulaires et en particulier les plasmatocytes, cellules immunitaires de l'hémolymphe. Les protéines virales sont alors produites en quantité considérable. Par exemple, la protéine virale majeure, EP1, atteint 5 % du total des protéines de l'hémolymphe de l'hôte quarante-huit heures après l'introduction du virus5. Cependant, ce début de cycle viral, qui devrait se poursuivre par la réplication de l'ADN du virus, avorte et il n'y a pas production de nouveaux virus. Les polydnavirus sont donc totalement dépendants de l'hyménoptère pour leur multiplication.

La présence de ces virus est également capitale pour l'hyménoptère. En effet, il a été démontré expérimentalement que les polydnavirus sont nécessaires au succès du parasitisme, ceci aussi bien pour l'espèce de guêpe que nous étudions famille des braconidés que pour une espèce de la famille voisine des ichneumonidés.
L'introduction artificielle des oeufs du parasite dans l'hôte en l'absence de fluide génital conduit à leur destruction. En revanche, lorsque les oeufs sont introduits avec du virus purifié injecté en solution, ils se développent normalement. Par ailleurs, si le génome viral a été détruit par rayonnement ultraviolet, les particules infectées ne confèrent plus aucune action protectrice aux oeufs du parasite6. Ce n'est donc pas la simple présence des particules virales dans l'hôte qui est nécessaire à la survie et au développement du parasite, mais bien l'expression des gènes viraux.

De manière encore plus remarquable, l'association guêpe-polydnavirus va au-delà de la dépendance physiologique. Il a en effet été montré que le génome viral présent dans le noyau des cellules de l'hyménoptère ne s'y trouve pas uniquement sous forme de molécules circulaires d'ADN viral, mais également sous forme intégrée dans une structure génomique de grande taille qui correspond, selon plusieurs auteurs, à un chromosome de la guêpe. C'est à partir de cette matrice que sont fabriqués les cercles d'ADN viral. Ce phénomène a été mis en évidence dans deux espèces de la famille des Ichneumonidés7. Nos résultats montrent que cette forme intégrée du génome viral existe également pour un polydnavirus associé à l'hyménoptère braconidé Cotesia Congregata. Les gènes intégrés des polydnavirus se comportent en fait comme de véritables gènes de la guêpe, transmis verticalement à ses descendants. La présence du polydnavirus est indispensable à la réussite parasitaire de la guêpe et le virus, de son côté, ne peut se multiplier que dans l'hyménoptère. Ces deux partenaires ont ainsi constitué une association de type symbiotique, stabilisée grâce à l'intégration de l'ADN viral dans le génome de l'hyménoptère.
Pour comprendre l'action des polydnavirus dans l'hôte, il faut rappeler qu'il existe chez les insectes un mécanisme permettant d'éliminer un corps étranger, comme par exemple l'oeuf d'un parasite. Ce mécanisme consiste dans un premier temps à isoler ce corps étranger en l'entourant d'une « capsule », généralement composée de cellules immunitaires et d'une substance synthétisée par l'organisme, la mélanine. L'« encapsulation » est un phénomène complexe et encore mal connu. Chez les lépidoptères, la première étape de la formation d'une capsule est la reconnaissance de l'oeuf du parasite par les granulocytes, cellules qui contiennent des inclusions dans leur cytoplasme. Cette reconnaissance entraîne leur dégranulation, c'est-à-dire la libération de leurs inclusions et des médiateurs chimiques qu'elles contiennent. Les facteurs libérés vont attirer les plasmatocytes qui vont entourer le corps étranger pour former la capsule8.
Les polydnavirus sont capables d'inhiber ce mécanisme d'encapsulation9. Il a en effet été montré que l'injection de polydnavirus purifié provoque très rapidement une modification des capacités d'adhésion des plasmatocytes. Ces cellules ne sont alors plus capables de s'attacher sur un corps étranger et ne forment pas de capsule. D'autre part, non contents d'altérer ces fonctions, les polydnavirus induisent un phénomène de mort cellulaire massive des cellules immunitaires de l'hôte. Ce phénomène, décrit par le groupe de Michael Strand de l'université du Wisconsin, concerne particulièrement les granulocytes dont le nombre baisse considérablement dans les jours qui suivent la ponte du parasite. Ces cellules sont détruites par l'activation de leurs propres gènes d'apoptose, c'est-à-dire les gènes déclenchant la mort cellulaire programmée. Notre connaissance actuelle permet d'imaginer des scénarios expliquant l'évolution des interactions guêpes-virus vers une symbiose du type hyménoptère polydnavirus. Nous avons vu que les hyménoptères parasites sont des outils de dissémination des virus dans les populations d'insectes hôtes. Ce phénomène favorise l'apparition d'associations hyménoptère virus, qui peuvent être stabilisées si le virus ne défavorise pas le parasite en ayant un effet pathogène ou en empêchant le développement de la larve dans l'hôte. Par exemple, dans le modèle Diadromus ascovirus , des mécanismes entraînant le ralentissement du cycle viral de l'ascovirus dans lachrysalide parasitée et donc permettant le développement du parasite, ont été sélectionnés. Ceci a permis de stabiliser l'association guêpe ascovirus : comme nous l'avons montré, dans les populations naturelles d'hyménoptères, tous les individus hébergent cet ascovirus. Cette observation suggère que l'association est également bénéfique pour la guêpe. Si le virus devient non plus avantageux mais indispensable à la réussite parasitaire de l'hyménoptère, on peut observer l'apparition d'associations de type symbioses. Dans le cas des polydnavirus, nous pouvons imaginer plusieurs scénarios évolutifs différents.

Dans une première hypothèse, un virus infecte, à l'origine, une espèce de lépidoptère parasitée par un hyménoptère : il effectue son cycle viral complet chez le papillon et se maintient chez la guêpe. Ce virus est avantageux pour l'hyménoptère en favorisant sa réussite parasitaire. A un moment donné, le matériel génétique viral s'intègre dans le génome d'une cellule germinale ou d'un oeuf du parasite. Il est alors transmis à la descendance de cette guêpe. Cette association irréversible étant avantageuse pour l'hyménoptère, elle se fixe dans la population. Sous l'effet de la sélection, le virus peut alors perdre progressivement sa capacité à effectuer un cycle complet dans l'hôte puisque la production de particules infectieuses n'est plus nécessaire à sa transmission. De même, le parasite peut perdre sa capacité à « réussir » le parasitisme en l'absence de virus.
A terme, seules seront conservées chez le virus les fonctions utiles à la réussite parasitaire, c'est-à-dire la réplication des gènes codant pour les protéines à action immunosuppressive et la production des particules permettant de les transporter dans les cellules de l'hôte. Le virus est alors devenu une véritable « sécrétion génétique » du parasite. En poussant ce raisonnement à l'extrême, le génome viral présent dans les particules peut même finir par disparaître si ces dernières sont à elles seules suffisantes à conférer l'avantage sélectif au parasite. Cette situation a été décrite pour une guêpe ichneumo-nidée, Venturia canescens, qui produit des VLP Virus like particule, c'est-à-dire des particules virales sans matériel génétique. Les VLP recouvrent les oeufs du parasite et assurent son camouflage vis-à-vis des mécanismes de défense de l'hôte, permettant ainsi le succès parasitaire10.
Une autre hypothèse pouvant expliquer la mise en place de ces symbioses suppose l'existence d'un virus effectuant son cycle viral chez l'hyménoptère. Ce virus peut être quelque peu pathogène pour la guêpe mais il améliore la réussite parasitaire lorsqu'il est injecté dans l'hôte parasité en même temps que l'oeuf. A la suite de l'intégration exceptionnelle de l'ADN viral dans la lignée germinale de la guêpe, l'association devient irréversible. La sélection peut alors conduire à la perte des gènes viraux dont l'expression constituait un désavantage pour l'hyménoptère ; le virus perd son caractère pathogène pour la guêpe. La production de grandes quantités de virus dans les cellules du tractus génital de la guêpe est en revanche sélectionnée puisqu'elle présente un avantage lors du parasitisme. En faveur de cette hypothèse d'une origine hyménoptère des polydnavirus, il faut noter que des cercles d'ADN viraux sont produits en faible quantité dans tous les tissus de la guêpe. Cette faible production virale pourrait être le reflet d'une multiplication ancestrale ubiquiste du virus. Comme dans le premier scénario, le parasite peut alors perdre sa capacité à réussir le parasitisme en l'absence de virus.
Ces observations soulignent le caractère original des associations mises en place dans le groupe des hyménoptères. Ainsi, elles montrent que les virus qui utilisent leur hôte pour se multiplier peuvent parfois être eux-mêmes utilisés par l'organisme qui les abrite. Dans le cas extrême des polydnavirus, cette évolution a conduit à la mise en place d'une symbiose. Dans les années à venir, la poursuite des travaux sur d'autres modèles biologiques et l'obtention d'une meilleure connaissance des phylogénies des hyménoptères et de leurs virus permettront de tester et d'améliorer les scénarios évolutifs de mise en place de ces associations. Ces tra- vaux permettront également d'expliquer comment, non contents d'avoir inventé la vie en société, les hyménoptères ont également réussi à mettre au point l'arme biologique.

1 J.A. Hoffman, « Innate imunity of insects », Current Opinion in Immunology, 7 , 1995.
2 N.E. Beckage, Parasites and pathogens of insects , vol. 1, Academic Press Inc, San Diego, 1993.
3 D. Stoltz et J.B. Whitfield, Journal of Hymenopteran Research , 1 , 125, 1992.
4 B.A. Federici, P NAS , 80 , 7664, 1983.
5 S. Harwood et al. , Journal of Virology , 205 , 381, 1994.
6 K.M. Edson et al. , Science , 211 , 582, 1981.
7 J.G. W. Fleming et al. , in « Parasites and pathogens of insects » , vol 1, Academic Press Inc, San Diego,1993.
8 M.D. Summers et S.D. Dib-Hajj., P NAS , 92 , 29, 1995.
9 M.R. Strand et al. , Annual Review of Entomology, 40 , 31, 1995.
10 I. Feddersen et al. , Experientia , 42 , 1278, 1986.

 

DOCUMENT   larecherche.fr    LIEN

 
 
 
 

GÉNÉTIQUE

 

 

 

 

 

 

 

Le voyage de millions de piRNAs commence en un foyer unique nucléaire


Les petits ARN interférents piRNAs, ou Piwi-interacting RNAs, assurent la mise sous silence des éléments transposables dans l’appareil reproducteur. L’équipe de Chantal Vaury, au laboratoire Génétique, reproduction et développement, a élucidé chez la drosophile le mécanisme moléculaire de l’export des transcrits précurseurs des piRNA hors du noyau des cellules somatiques ovariennes. Ces précurseurs sont transférés vers une structure nucléaire unique, le Dot COM, avant leur export par un complexe d’exportines qui constitue le signal d’assemblage de la machinerie cytoplasmique nécessaire à leur maturation en piRNAs. Ces travaux ont été publiés le 8 décembre dans la revue Nature Communications.

Les éléments transposables sont des séquences d’ADN répétées capables de se déplacer d’un site chromosomique à l’autre. Semblables aux rétrovirus exogènes actuels, ces éléments mutagènes sont retrouvés dans le génome de presque tous les êtres vivants et représentent 45% du génome humain et 18% du génome de Drosophila melanogaster. Un contrôle strict de leur expression est essentiel pour empêcher que leur mobilisation n'engendre des réarrangements génomiques potentiellement délétères pour la survie de l’hôte. Dans l’appareil reproducteur, la mise sous silence des éléments transposables est primordiale pour la préservation de l’intégrité de l’information génétique transmise à la descendance. Le contrôle des éléments transposables y est assuré par la voie des piRNAs.

Les piRNAs sont une classe de petits ARNs de 23-29nt exprimés essentiellement dans les gonades. Chez la drosophile, les piRNAs proviennent de la maturation de longs ARNs précurseurs transcrits à partir de régions génomiques particulières, majoritairement hétérochromatiques, appelées clusters de piRNAs. Ces clusters, qui peuvent s’étendre sur plusieurs centaines de kilobases, sont composés en grande partie d’éléments transposables entiers et tronqués enchevêtrés. Après leur maturation dans le cytoplasme, les piRNAs sont chargés sur une protéine effectrice de la famille PIWI. Le complexe RISC (RNA-induced silencing complexe) formé cible et clive les ARNs de séquence complémentaire, induisant une mise sous silence transcriptionnelle ou post-transcriptionnelle des éléments transposables.

L’équipe de Chantal Vaury avait précédemment montré que les transcrits produits par les différents clusters de piRNAs exprimés dans les cellules somatiques ovariennes de drosophile sont activement transportés à travers le nucléoplasme et se rassemblent en un foyer nucléaire unique. Ce foyer, appelé Dot COM car il contient notamment les transcrits du cluster de piRNAs flamenco/COM (flam) majoritairement exprimé dans ces cellules, a une localisation particulière : situé à la périphérie nucléaire, il est éloigné du locus génomique flam et fait face à la machinerie cytoplasmique de maturation des piRNAs (Dennis & al., 2013. PLoS One. Sep 9;8(9):e72752.)

Dans cette nouvelle étude, les chercheurs montrent que le Dot COM correspond au site d’export des ARNs précurseurs vers leur machinerie cytoplasmique de maturation. L’export est assuré par le complexe d’exportines Nxf1-Nxt1. En absence de la protéine Nxt1, les ARNs précurseurs ne sont pas exportés et se retrouvent accumulés dans le Dot COM, il n’y a pas de production de piRNAs et les éléments transposables sont exprimés. De plus, dans ce contexte, la machinerie cytoplasmique de maturation des piRNAs n’est pas assemblée, suggérant que l’export des ARNs précurseurs constitue le signal d’assemblage de leur propre machinerie de maturation.

Outre leur rôle dans l’export des ARNs précurseurs, les exportines Nxf1-Nxt1 sont également requises, avec le complexe exon-jonction (EJC), pour le transfert nucléaire actif des ARNs précurseurs flam de leur site de transcription au Dot COM. En effet, en absence de ces protéines, les ARNs flam sont bloqués à leur site de transcription. Ils peuvent cependant être exportés dans le cytoplasme directement depuis leur site de transcription en contextes mutants pour les composants de l’EJC dans lesquels l’export n’est pas altéré.





 

En savoir plus
* Export of piRNA precursors by EJC triggers assembly of cytoplasmic Yb-body in Drosophila. 
Dennis C, Brasset E, Sarkar A, Vaury C.
Nat Commun. 2016 Dec 8;7:13739. doi: 10.1038/ncomms13739.  



 Contact chercheur
* Chantal Vaury 
Laboratoire GReD 
CNRS UMR 6293, Inserm U 1103, Université Clermont Auvergne 
Faculté de Médecine
28 Place Henri Dunant
63000 Clermont-Ferrand
Tel: 04 73 17 81 70

 

 DOCUMENT           cnrs       LIEN
 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google