ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

Sclérose latérale amyotrophique (SLA) / maladie de Charcot

 

  

 

 

 

 

 

              INFORMATION EN SANTÉ

Sclérose latérale amyotrophique (SLA) / maladie de Charcot

Sous titre
Une dégénérescence des motoneurones encore incurable.

       

La sclérose latérale amyotrophique est une maladie dégénérative grave et handicapante qui conduit au décès dans les 3 à 5 ans qui suivent le diagnostic. L'effort de recherche qui lui a été dédiée ces dernières années a permis de développer les connaissances sur la génétique et la biologie de cette maladie. Et si aucun traitement curatif n'est encore disponible, les perspectives à moyen terme sont encourageantes.
       

       

       

*         TEMPS DE LECTURE 15-20 minutes 
DERNIÈRE MISE À JOUR 19.12.15 
DIFFICULTÉ 4 sur 5
* Dossier réalisé en collaboration avec Séverine Boillée, unité 1127 Inserm/université Pierre et Marie Curie, Institut du cerveau et de la moelle épinière, Paris
* Comprendre la sclérose latérale amyotrophique
La sclérose latérale amyotrophique (SLA), aussi connue sous le nom de maladie de Charcot, est une maladie neurodégénérative grave qui se traduit par une paralysie progressive des muscles impliqués dans la motricité volontaire. Elle affecte également la phonation et la déglutition.
Il s'agit d'une maladie au pronostic sombre, dont l'issue est fatale après 3 à 5 ans d'évolution en moyenne. Le plus souvent, c’est l’atteinte des muscles respiratoires qui cause le décès des patients.

Les motoneurones sont les cellules nerveuses de la moelle épinière qui provoquent la contraction des muscles. Motoneurone de rat en culture. On distingue clairement le corps cellulaire d'un diamètre de trente microns, l'axone et les fibres collatérales. © Inserm, C. Henderson
La SLA est due à la mort progressive des motoneurones, les cellules nerveuses qui dirigent et contrôlent les muscles volontaires. Elle touche les deux types de motoneurones effecteurs de la motricité : ceux dits centraux, localisés dans le cerveau, et ceux dits périphériques, situés dans le tronc cérébral
tronc cérébral
Partie du système nerveux central située entre le cerveau et la moelle épinière, responsable de plusieurs fonctions de régulation : respiration, rythme cardiaque, contrôle de la douleur…
et la moelle épinière. Ces derniers assurent le relais entre les motoneurones centraux et les muscles.
La composante génétique encore mal cernée
L'origine de la SLA est complexe à déterminer : la survenue de la maladie serait multifactorielle, soumise à l'influence de la génétique et de l'environnement.
Concernant le rôle de l’environnement, aucun facteur déclenchant n'a été clairement mis en évidence. Le tabac, le sport de haut niveau, les pesticides, les métaux lourds et la cyanotoxine BMAA, présente dans certaines algues, sont suspectés. Mais, à ce jour, les données disponibles ne permettent pas de les impliquer formellement.
Dans la pratique, la SLA est familiale chez 10% des malades. Dans ce cas, l'origine génétique est probable, même si elle n'est pas toujours facile à démontrer. Pendant longtemps, une seule mutation responsable de la maladie était connue. Affectant le gène SOD1, elle a permis de donner naissance au premier modèle animal de SLA. Depuis, une vingtaine d'autres gènes impliqués ont été identifiés : C9ORF72, dont la mutation est observée dans plus de 40% des formes familiales, TARDBP, FUS/TLS... Lorsque aucune mutation causale connue n'est retrouvée, la maladie familiale découle probablement de l’altération d'un ou de plusieurs gènes pour l'heure non identifiés.
Lorsque la maladie touche des personnes sans risque génétique familial (90% des cas), elle est dite sporadique. Ces cas sont vraisemblablement liés à la mutation aléatoire (et non transmise) d'un gène causal ou d'un ou plusieurs gènes de susceptibilité (qui augmenteraient le risque de survenue de la maladie).





ARSLA et autres maladies du motoneurone
455 abonnés
Sclérose Latérale Amyotrophique (SLA)



Sclérose Latérale Amyotrophique (SLA) – animation pédagogique – 1 min 28 – vidéo de l’association ARSLA (2012)
Une maladie progressivement invalidante
La SLA apparaît souvent entre 50 et 70 ans, même si elle survient en moyenne plus précocement lorsqu'elle est d'origine familiale.
Elle prend des formes différentes selon la nature de l'atteinte initiale :
*         Dans environ 30% des cas, elle débute au niveau du tronc cérébral. On parle d'une forme à début bulbaire dont les premières manifestations sont les difficultés à articuler ou à déglutir.
*         Dans les autres cas, la SLA altère d'abord les motoneurones périphériques : dans cette forme à début spinal, c'est par une faiblesse et une gêne au niveau d'un bras, d'une jambe ou d'une main que se manifeste la maladie pour la première fois.
La maladie s'intensifie progressivement : des contractures, une raideur des muscles et des articulations apparaissent localement. L'atteinte se transmet à d'autres muscles. Une fonte musculaire et des troubles de la coordination finissent par gêner la marche et la préhension des objets. Les difficultés à déglutir ou à articuler croissent. L'atteinte des muscles respiratoires intervient souvent à un stade avancé de la maladie. Elle précipite son aggravation et le risque de décès.
Une meilleure connaissance de la maladie permet aujourd'hui de repérer des formes de SLA dans lesquelles apparaissent aussi des douleurs, des manifestations de type parkinsoniens ou des troubles du comportement (démence fronto-temporale).
Des mécanismes physiopathologiques variés et encore mal compris
Il est encore très difficile d'établir précisément les mécanismes initiant et maintenant la dégénérescence neuronale impliquée dans la SLA. Cependant, plusieurs phénomènes ont été décrits, notamment grâce à l’étude des mutations génétiques associées à la maladie et de leur impact sur le fonctionnement des cellules nerveuses. Il s’agit, entre autre, de défauts de repliement des protéines mutées qui s'agrègent avec d'autres protéines dans les cellules : ces amas peuvent bloquer des fonctions vitales pour les neurones, conduisant par exemple au dysfonctionnement des mitochondries
mitochondries
Organite cellulaire qui joue un rôle crucial dans le métabolisme cellulaire en assurant la production d'énergie.
(qui produisent l‘énergie des cellules) ou à une perturbation des fonctions de transport dans le neurone. Certaines mutations (affectant les gènes TDP43, FUS, C9ORF72) peuvent aussi entraîner un défaut dans la maturation des ARN
ARN
Molécule issue de la transcription d'un gène.
messagers, des molécules impliquées dans la synthèse des protéines nécessaires au bon fonctionnement de la cellule. Dans les neurones porteurs de mutations du gène TDP43, c'est la production même des ARN messagers
ARN messagers
Molécule issue de la transcription d’un gène et qui permet la synthèse d’une protéine.
qui serait perturbée.
Autre hypothèse : celle de l'excitotoxicité du glutamate
glutamate
Neurotransmetteur excitateur le plus répandu dans le système nerveux central.
(un neurotransmetteur
neurotransmetteur
Petite molécule qui assure la transmission des messages d'un neurone à l'autre, au niveau des synapses.
) sur les cellules nerveuses. Ce phénomène serait lié à une stimulation continue et anormale des neurones par une trop grande production de glutamate ou par sa mauvaise élimination. Sont également pointés du doigt le stress oxydatif
stress oxydatif
Déséquilibre entre la production par l’organisme d’agents oxydants nocifs (radicaux libres, notamment) et celle d’agents antioxydants (comme les vitamines E et C). Il entraîne une inflammation et la survenue de mutations de l’ADN.
et l’atteinte des cellules gliales (cellules de soutien des neurones) ou des cellules immunitaires. Les modèles animaux de la SLA ont mis en évidence un état inflammatoire chronique local dans lequel les cellules microgliales, les astrocytes
astrocytes
Cellule gliale en forme d’étoile qui assure le support et la protection des neurones.
et les macrophages
macrophages
Cellule du système immunitaire chargée d’absorber et de digérer les corps étrangers
environnants jouent un rôle délétère sur les neurones. Ces mécanismes pourraient donc constituer une cible thérapeutique potentielle. Enfin certains patients présentent un hypermétabolisme
hypermétabolisme
Augmentation anormale du métabolisme de base observée en cas de traumatisme ou de certaines maladies.
qui peut engendrer une perte de poids significative et aggraver le pronostic. Certaines études visent à comprendre la corrélation entre ces deux phénomènes. Il faut désormais comprendre comment s'articulent et/ou coexistent tous ces mécanismes entre eux.
Diagnostic par élimination

Le diagnostic de la SLA est souvent posé par élimination, après avoir écarté les pathologies de présentation proche parmi les maladies neurodégénératives et celles qui touchent les motoneurones.
Ce diagnostic repose sur des examens neurologiques et cliniques. Le neurologue en charge de cette évaluation recherche la présence de signes de neurodégénérescence au niveau musculaire, de signes d'atteinte bulbaire et de pathologies ou de symptômes associés. L’examen neurologique associé à un bilan biologique, à la réalisation d'un électromyogramme et à celle d'un IRM permettent de confirmer le diagnostic face à des symptômes persistants depuis quelques mois.
L'aggravation des symptômes reste l'un des signes permettant de différencier la SLA d'autres maladies du motoneurone, mais des examens spécifiques peuvent être prescrits au cas par cas pour le confirmer.
La SLA demande une prise en charge pluridisciplinaire
Il n'existe pas de traitement curatif de la SLA. La prise en charge de la maladie cible les symptômes : aide technique, kinésithérapie et médicaments antispastiques pour contrer les troubles moteurs, myorelaxants et antalgiques contre les douleurs, prise en charge de la dénutrition, orthophonie pour les troubles de la parole et de la déglutition, accompagnement psychologique…
Même si le pronostic de la maladie reste sévère, de réels progrès ont été réalisés ces vingt dernières années :
*         la ventilation non invasive (VNI), qui supplée la fonction respiratoire lorsqu'elle commence à décliner
*         la prescription de riluzole, seul médicament à avoir démontré sa capacité à ralentir l'évolution des symptômes
améliorent modestement l'espérance de vie des patients SLA.
Depuis les années 1990, les personnes atteintes de SLA bénéficient d'une prise en charge optimale, spécialisée et pluridisciplinaire à travers un réseau de centres de référence : il en existe aujourd'hui une vingtaine, répartis sur toute la France.
Les enjeux de la recherche
Dissocier les différentes formes de SLA pour mieux les traiter
Depuis quelques années, on commence à considérer la SLA comme un syndrome, et non plus comme une maladie : l'âge de survenue des premiers symptômes, la présentation bulbaire ou spinale initiale, la rapidité d'évolution, ou encore les pathologies associées peuvent en effet laisser penser que différentes maladies du motoneurone seraient regroupées sous le nom générique de SLA. Cette hétérogénéité pourrait expliquer l'échec de nombreux essais cliniques conduits autour de nouveaux traitements.
Un des objectifs des chercheurs est donc de dissocier l'ensemble des patients en groupes plus homogènes ; la découverte récente de différentes mutations génétiques pourrait aider à mieux regrouper ceux pour lesquels la cause de la maladie est la même. Les symptômes cliniques peuvent aussi aider à différencier les patients, même si leur spécificité est imparfaite. De nouvelles perspectives seront apportées par l'identification de nouveaux biomarqueurs
biomarqueurs
Paramètre physiologique ou biologique mesurable, qui permet par exemple de diagnostiquer ou de suivre l’évolution d’une maladie.


Sclérose latérale amyotrophique – Interview – 6 min – vidéo de l’Institut du cerveau et de la moelle épinière (2014)
A la recherche de biomarqueurs pertinents
L'identification de biomarqueurs biologiques ou radiologiques pourrait non seulement faciliter ce diagnostic, mais aussi aider à prédire l'évolutivité de la SLA et la réponse aux traitements.
Plusieurs pistes sont aujourd'hui à l'étude :
*         Celle des neurofilaments. Ces assemblages de protéines forment le cytosquelettecytosqueletteRéseau de filaments protéiques à l'intérieur des cellules, confèrant à ces dernières leur structure et leurs propriétés mécaniques. 

des neurones et peuvent s’agréger dans les motoneurones en cas de SLA. Des premières données suggèrent une corrélation entre le taux d'une sous-partie protéique des neurofilaments retrouvé dans le sang ou le liquide céphalorachidienliquide céphalorachidienLiquide transparent dans lequel baignent le cerveau et la moelle épinière.

et l'évolution de la maladie.
*         Celle de protéines et d'ARN issues de certains sous-types de lymphocytes dont la quantité augmente chez les personnes atteintes de SLA. Le suivi de leur concentration sanguine pourrait être un marqueur de la vitesse d'évolution de la maladie.
*         Celle de l'imagerie fonctionnelle. En permettant d'étudier la dynamique de l'activité cérébrale, elle pourrait être utile, à terme, pour prédire la progression de la maladie. Des données expérimentales montrent que l'IRM permettrait de mesurer des paramètres d’atrophie de la moelle épinière, tandis que le PET-scan pourrait lui utiliser l’évolution de l’inflammation comme marqueur prédictif.
Ces études sont encore du domaine de la recherche et il n'existe encore aucun biomarqueur validé permettant d'envisager une utilisation en clinique.
Vers de nouvelles perspectives de traitement

Jusqu'à présent de nombreux candidats médicaments ont échoué à montrer leur efficacité. Mais, une nouvelle vague d'innovations a récemment été portée par l'identification de gènes responsables de la SLA et par la compréhension des cascades biologiques intervenant dans la survenue de la maladie. Ainsi, chacun des mécanismes pathogènes décrits constitue une cible thérapeutique potentielle.
Plusieurs agents thérapeutiques sont étudiés pour contrer la toxicité de la protéine mutante SOD1. Des essais cliniques de phase I ont notamment été conduits avec succès à partir d'oligonucléotides antisens qui empêchent la production de la protéine. De la même façon, des oligonucléotides
oligonucléotides
Court segment d’acides nucléiques (ARN ou ADN).
antisens sont étudiés pour contrer la protéine mutante C9ORF72.
Le microenvironnement des neurones fait aussi l'objet d'études interventionnelles : une molécule expérimentale, le NP001, a fait l'objet de premières études cliniques pour contrer l'activité délétère des macrophages environnants.
Favoriser la régénérescence neuronale permettrait par ailleurs de pallier le mécanisme de mort cellulaire de la SLA. Des premières études cliniques sont en cours avec un agent anti-NOGO, ciblant la protéine NOGO, inhibitrice de la repousse des axones
axones
Prolongement de neurones
.
Thérapie cellulaire et cellules souches
La thérapie cellulaire consiste à restaurer la fonction d’un tissu ou d’un organe en introduisant des cellules saines dans l'organe malade. Deux options sont envisagées afin d'appliquer cette approche innovante à la problématique de la SLA : la première consiste à remplacer les cellules défaillantes de l'environnement des motoneurones afin qu'elles leurs apportent des facteurs trophiques favorables à la survie de ces derniers. Pour l'heure, les chercheurs utilisent différents types de cellules issues de la moelle osseuse ou des cellules souches issues du tissu nerveux, qui sont injectées dans la moelle épinière. Plusieurs études cliniques ont d'ores et déjà été conduites en Espagne, en Israël et aux Etats-Unis.
A plus long terme, une seconde option pourrait consister à utiliser des cellules souches pluripotentes induites (iPSC), spécialisées en motoneurones ou en cellules de soutien avant d'être administrées. Ces cellules thérapeutiques viendraient remplacer les motoneurones défaillants ou les cellules de leur environnement. Beaucoup d’étapes restent encore à franchir pour y parvenir.
Mais quelle que soit l'option, la difficulté de mise en œuvre de la thérapie cellulaire est d'apporter les cellules de remplacement in situ. Cela nécessite une chirurgie lourde qui pourrait être limitante pour l’utilisation clinique de ces approches.

 

 DOCUMENT      inserm     LIEN

 
 
 
 

THÉRAPIE CELLULAIRE

 

 

 

 

 

 

 

Thérapie cellulaire
Sous titre
Greffer des cellules souches pour soigner durablement
        

La thérapie cellulaire consiste à greffer des cellules afin de restaurer la fonction d’un tissu ou d’un organe. L’objectif est de soigner durablement le patient grâce à une injection unique de cellules thérapeutiques. Ces cellules sont obtenues à partir de cellules souches pluripotentes
cellules souches pluripotentes
Cellules capables de se différencier en n'importe quel type de cellulaire.
(pouvant donner tous types de cellules) ou multipotentes (pouvant donner un nombre limité de types de cellules) provenant du patient lui-même ou d’un donneur. De nombreuses approches de thérapie cellulaire sont en cours de développement. Quelques-unes sont en outre déjà validées.
       

TEMPS DE LECTURE 20 min 
DERNIÈRE MISE À JOUR 01.04.15 
DIFFICULTÉ 3 sur 5
*        
Dossier réalisé en collaboration avec Marc Peschanski, directeur de l’Institut des cellules souches pour le traitement et l'étude des maladies monogéniques (I-Stem, unité Inserm 861, Genopole d'Évry), et Christian Jorgensen, directeur de l’Institut de médecine régénératrice et de biothérapies (unité Inserm 844) et coordinateur de la plateforme nationale de thérapie cellulaire ECellFrance au CHU de Montpellier.

Comprendre les problématiques associées à la thérapie cellulaire

Les différentes sortes de cellules souches

Laboratoire de culture cellulaire, observation de cellules souches embryonnaires humaines au microscope. Centre d'étude des cellules souches (CECS) © Inserm, F. Guénet

Plusieurs sortes de cellules souches sont utilisées pour obtenir des cellules différenciées et fonctionnelles adaptées à la thérapie cellulaire. Ces différents types de cellules partagent toutefois deux propriétés : celle de s’autorenouveler indéfiniment, offrant un stock illimité de matériel, et celle de pouvoir donner naissance à plusieurs types cellulaires.
Les cellules souches pluripotentes
Les cellules souches pluripotentes peuvent donner tous les types de cellules de l’organisme. Il peut s’agir de :
*         cellules souches embryonnaires prélevées sur des embryons de 5 à 7 jours,
*         cellules souches pluripotentes induites (IPS pour Induced Pluripotent Stem cells) prélevées chez des adultes et reprogrammées en cellules pluripotentes par génie génétique.
Les chercheurs savent aujourd’hui obtenir la différenciation des cellules pluripotentes en plusieurs types cellulaires, comme des cellules de la rétine ou de la peau. Chaque type cellulaire est obtenu grâce à un cocktail de facteurs de croissance et de différenciation spécifique, dont la recette est complexe et longue à mettre au point. Pour certains types cellulaires, comme les cellules musculaires squelettiques, le cocktail nécessaire n’a pas encore été découvert.


MOOC côté cours : Qu'est-ce qu'une cellule souche?

Les cellules souches multipotentes
La thérapie cellulaire peut également être réalisée avec des cellules souches multipotentes qui peuvent se différencier en un nombre limité de types cellulaires.
Les plus utilisées sont les cellules souches mésenchymateuses, présentes dans tout l’organisme au sein du tissu adipeux
tissu adipeux
Tissu contenant les adipocytes, cellules spécialisées dans le stockage de la graisse.
, de la moelle osseuse, des tissus de soutien des organes, mais également au sein des os, des cartilages, des muscles...  Ces cellules souches sont particulièrement faciles à prélever dans le tissu adipeux ou la moelle osseuse. Elles peuvent donner naissance à des cellules cartilagineuses (chondrocytes
chondrocytes
Cellule qui synthétise les composants du cartilage, comme le collagène.
), osseuses (ostéoblastes
ostéoblastes
Cellule permettant la formation de l’os.
), graisseuses (adipocytes
adipocytes
Cellule du tissu adipeux, spécialisée dans le stockage de la graisse.
), à des fibres musculaires (myocytes), des cardiomyocytes… Elles secrètent, en outre, des facteurs de croissance favorables aux cellules environnantes et sont parfois utilisées exclusivement pour cette propriété. Elles produisent également des facteurs anti-inflammatoires qui entrainent une immunosuppression locale et favorisent la fonction de cellules régulatrices de l’immunité. Ces propriétés limitent l’inflammation locale et protègent, a priori, contre le rejet de greffe.
D’autres cellules multipotentes peuvent être utilisées en thérapie cellulaire, comme les cellules souches cutanées. Ces dernières sont utilisées depuis les années 80 pour reconstituer les différentes couches de l’épiderme et greffer les grands brûlés. Les cellules souches de l'œil, provenant du limbe (en périphérie de la cornée), permettent, quant à elles, de réparer des lésions de la cornée. Enfin, les cellules souches hématopoïétiques issues de la moelle osseuse sont à l’origine de toutes les cellules du sang : en cas de cancer hématologique, elles permettent de reconstituer un stock de cellules sanguines saines chez le patient, après avoir détruit ses propres cellules malades par chimiothérapie. Cette intervention se pratique depuis les années 70.

Le sang de cordon également riche en cellules souches
Le sang de cordon ombilical contient des cellules souches hématopoïétiques naïves sur le plan immunitaire, et donc très bien tolérées en cas de greffe. Le sang de cordon est utilisé pour traiter des hémopathies malignes comme les leucémies ou des lymphomes
lymphomes
Cancer du système lymphatique qui se développe aux dépens de lymphocytes.
, ou encore des maladies génétiques comme l'anémie de Fanconi. Il offre une alternative sérieuse à la greffe de moelle en l’absence de donneur compatible. Toutefois, le nombre de cellules thérapeutiques récupérées par cordon est faible.
La conservation de sang placentaire n’est autorisée en France que pour soigner d’autres patients, de façon anonyme et gratuite. Le réseau français du sang placentaire (RFSP) coordonne la collecte et la conservation du sang de cordon, grâce à un réseau de maternités partenaires couvrant plus du quart des naissances en France. Les femmes qui acceptent de donner ce produit sanguin à l’occasion de la naissance de leur enfant, le font de manière altruiste afin d’aider des patients qu’elles ne connaissent pas, atteints de maladies mortelles du sang. A partir du quatrième mois de grossesse, si la mère est éligible, elle peut donner son consentement. Le prélèvement a lieu dans les minutes qui suivent l’accouchement lorsque le cordon ombilical vient d’être coupé et que le placenta est encore dans l’utérus. Le sang est ensuite congelé et conservé dans une banque en vue de son utilisation ultérieure.

Obtenir des cellules thérapeutiques

L’indication d’une thérapie cellulaire définit le plus souvent le choix des cellules souches à utiliser. Ainsi, les cellules souches embryonnaires se différencient spontanément en cellules de la rétine et sont donc particulièrement adaptées à la mise au point de traitements de maladies affectant cet organe. Pour traiter l’arthrose, le choix se porte plus spontanément vers les cellules mésenchymateuses, capables de donner des cellules de cartilage.
Des laboratoires détiennent des lignées de cellules souches et collaborent avec les équipes qui cherchent à développer des thérapies cellulaires. Toute la difficulté est de mettre au point le milieu de culture permettant d’orienter les cellules souches vers le type cellulaire désiré de façon très homogène, avec la garantie de leur stabilité après l’implantation. Une seule cellule restée indifférenciée se renouvellerait indéfiniment dans l’organisme du patient la recevant, risquant de provoquer un cancer. Une fois, ce milieu de culture adapté obtenu, les laboratoires doivent adapter leur procédure aux normes de bonnes pratiques de production (ou "GMP" pour Good Manufacturing Practices) et de conservation, afin d’obtenir des cellules thérapeutiques de "grade clinique". C’est la condition sine qua non pour que ces cellules soient agréées par les autorités de santé et que des essais cliniques puissent être menés chez l’Homme.
Dans certaines indications, les cellules souches produites pour la thérapie cellulaire peuvent être modifiées génétiquement par thérapie génique.

La thérapie cellulaire, un traitement "one shot"
Un traitement unique pour un coût qui paraît raisonnable : c’est ce qui semble se dessiner avec la thérapie cellulaire. Les coûts de production des cellules thérapeutiques sont en effet amenés à diminuer avec l’automatisation des processus. A partir de 750 000 cellules souches embryonnaires décongelées, il est aujourd’hui possible de créer une banque de 325 millions de kératinocytes (cellule majoritaire de l'épiderme) en quatre mois, sachant qu’il en faut environ 500 000 pour traiter un patient. Ce seuil devrait être décuplé dans les années à venir. Actuellement, le coût d’un médicament de thérapie cellulaire est estimé entre 10 000 à 20 000 euros. Et contrairement aux médicaments courants, une administration unique suffit pour traiter le patient.

Le problème de la compatibilité donneur-receveur

Coloration au rouge alizarine de cellules souches mésenchymateuses différenciées en ostéoblastes. Les ostéoblastes sont les cellules responsables de la formation osseuse. © Inserm, D. Noël
Le prélèvement des cellules souches utilisées en thérapie cellulaire peut être réalisé sur le patient lui-même. Il est alors dit autologue et les cellules thérapeutiques seront parfaitement tolérées par le patient sur le plan immunitaire. L’utilisation de cellules autologues est possible lorsqu’on a recours à des cellules souches multipotentes ou à des cellules IPS. Point faible de cette solution, elle allonge les délais de traitement par rapport à l’utilisation de cellules thérapeutiques prêtes à l’emploi issue de banques.

Lorsque les cellules souches thérapeutiques sont prélevées chez une autre personne que le patient, elles sont dites allogènes.  Leur utilisation peut poser des problèmes de tolérance immunitaire : les cellules du donneur peuvent être reconnues par le système immunitaire du patient comme des éléments étrangers et être éliminées. Des rejets de greffe peuvent donc théoriquement avoir lieu. En cas de greffe de moelle, par exemple, le patient receveur doit suivre un traitement immunosuppresseur pour éviter ce rejet.
Concernant l’utilisation de cellules IPS allogènes, les chercheurs anticipent ce problème en créant actuellement des banques de cellules marquées selon leur profil immun (HLA
HLA
Les protéines HLA, situées à la surface des cellules, permettent au système immunitaire de distinguer les cellules de l’organisme des cellules étrangères.
), de manière à pouvoir choisir des cellules thérapeutiques compatibles avec le profil des patients receveurs. Il s’agit d’un gros travail, mis en œuvre via des collaborations internationales et coordonné par l’Alliance GAIT (Global Alliance for IPS Therapy).  L’Inserm y participe.
Avec les cellules souches embryonnaires, le problème de la compatibilité donneur-receveur est moins aigu : ces cellules paraissent en effet faiblement immunogènes

immunogènes
Qui induit une réaction immunitaire.
et leur utilisation ne nécessite a priori qu’un traitement immunosuppresseur transitoire. Néanmoins, ce point crucial est suivi de près dans le cadre des essais cliniques en cours. Si l’immunogènicité de ces cellules est plus importante que prévue et nécessite un traitement immunosuppresseur prolongé, voire à vie, cela pourrait remettre en cause leur intérêt dans des indications qui ne sont pas majeures.
Quant aux cellules souches mésenchymateuses couramment utilisées dans les essais actuels, elles expriment faiblement les marqueurs HLA et, de plus, secrètent des facteurs immunosuppresseurs qui limitent les réactions immunitaires contre le greffon. Aucun traitement immunosuppresseur exogène n’est donc nécessaire lorsqu’on utilise des cellules souches mésenchymateuses allogènes. Toutefois, avant une implantation, les chercheurs vérifient que le patient receveur n’exprime pas d’anticorps contre le système HLA du donneur.


Inserm

Etat de la recherche : Vers la peau universelle


Les enjeux de la thérapie cellulaire – essais cliniques

Les essais cliniques en cours à partir de cellules souches embryonnaires
Une société de biotechnologie américaine (Ocata Therapeutics) utilise des cellules souches embryonnaires humaines différenciées en cellules de la rétine pour lutter contre la DMLA et différenciées en cellules épithéliales pigmentaires de la rétine pour lutter contre la dystrophie maculaire de Stargardt. Dans les deux cas, des essais de phase I et II sont en cours pour évaluer la sécurité de cette approche et évaluer l’effet thérapeutique. Les premiers résultats sont modestes, mais positifs. Un autre essai se prépare dans la DMLA, piloté par The London Project to Cure Blindness en partenariat avec un laboratoire pharmaceutique (Pfizer). L’idée est la même : développer des cellules de la rétine à partir de cellules souches embryonnaires pour les injecter à des patients de plus de 50 ans souffrant de cette baisse d’acuité visuelle.

Sur le campus du Génopole d’Evry, des chercheurs du laboratoire I-Stem (unité Inserm 861) travaillent en étroite collaboration avec l’Institut de la vision (unité Inserm 968) et l’AFM-Téléthon sur d’autres applications de thérapie cellulaire se fondant sur l’utilisation de cellules souches embryonnaires humaines. Ce laboratoire développe notamment l’utilisation de cellules souches embryonnaires humaines différenciées en kératinocytes dans le traitement des ulcères cutanés associés à une maladie génétique, la drépanocytose. Les travaux précliniques actuellement conduits visent à vérifier la biodistribution des cellules injectées et l’absence de risque tumorigène.

Dans le domaine de la cardiologie, une équipe de l’hôpital européen Georges Pompidou (unité Inserm 970) a pratiqué en octobre 2014 une greffe de cellules cardiaques dérivées de cellules souches embryonnaires humaines, selon un procédé développé par des chercheurs de l’hôpital Saint-Louis (unité Inserm 1160). Dix semaines après, l’état de la patiente, une femme âgée de 68 ans atteinte d’insuffisance cardiaque sévère, s’était nettement amélioré, sans complication apparente. Autre maladie ciblée par ce type d’approche : le diabète de type 1. Une autre société de biotechnologie américaine (ViaCyte) prépare un essai clinique se fondant sur l’utilisation de cellules de pancréas productrices d’insuline obtenues à partir de cellules souches embryonnaires. Les cellules à greffer sont encapsulées dans un disque sophistiqué : ce dispositif permet à l’insuline et au glucose de diffuser, mais protège le greffon d’une réaction immune de l’hôte. Les résultats précliniques sont encourageants. L’objectif est de restaurer la production d’insuline à long terme chez les patients.

Les essais cliniques en cours à partir de cellules IPS
Les cellules IPS sont peu utilisées en thérapie cellulaire, en raison de l’étape de reprogrammation dont la sécurité pose question. Si les essais cliniques menés avec les cellules souches embryonnaires s’avèrent concluants, notamment sur le plan de la tolérance immunitaire, il y a peu de chances que les cellules IPS soient plus largement utilisées à l’avenir. Si en revanche, les cellules souches embryonnaires sont finalement plus immunogènes que prévu, l’utilisation de cellules IPS autologues connaîtra probablement un essor.
Un essai clinique utilisant des cellules IPS est néanmoins en cours au Japon, dans le traitement de la DMLA humide, forme quasi exclusive de DMLA dans le pays. Les cellules thérapeutiques sont prélevées chez les patients (cellules autologues), reprogrammées puis redifférenciées en cellules de la rétine, et finalement réinjectées aux patients. Une dizaine de patients seront traités dans le cadre de cet essai visant à évaluer la sécurité et la faisabilité de cette approche.
En France, INGESTEM, une infrastructure nationale coordonnée par l'Inserm et labellisée par le plan Investissements d'avenir 2012-2019, réunit cinq équipes de recherche pionnières dans le domaine de la biologie des cellules IPS et de l'ingénierie tissulaire. Leur objectif est d'utiliser les techniques de reprogrammation cellulaire pour générer des modèles de pathologies humaines et de médecine régénérative.

Inserm

Les essais cliniques en cours à partir de cellules souches mésenchymateuses
Plus de 350 essais cliniques de thérapie cellulaire utilisant des cellules mésenchymateuses sont en cours dans le monde. Dans un tiers d’entre eux, les cellules thérapeutiques utilisées sont des cellules autologues. Les indications testées sont extrêmement variées en raison des capacités de ces cellules à se différencier en différents types cellulaires et à produire des facteurs de croissance et d’immunosuppression. Des essais concernent la rhumatologie (arthrose, polyarthrite rhumatoïde), des dégénérescences musculaires (myopathies), la cardiologie (accident vasculaire cérébrale, infarctus du myocarde, ischémie
ischémie
Diminution de l'apport sanguin artériel à un organe, entraînant une baisse de l'oxygénation de ces tissus et donc la perturbation, voire l'arrêt, de sa fonction.
des membres inférieurs), le diabète, des maladies auto-immunes (lupus), le rejet de greffe...
Au CHU de Montpellier, l’essai ADIPOA est en cours dans le traitement de l’arthrose modérée à sévère. Il est conduit auprès de 18 patients qui reçoivent une injection unique de cellules souches mésenchymateuses directement dans l’articulation. Trois doses différentes de cellules sont testées. Les premiers résultats montrent une réponse chez 80% des sujets, avec un gain de fonctionnalité et une baisse de la douleur neuf mois après l’injection. Un essai de phase II devrait être lancé d’ici la fin de l’année 2015. Il inclura 150 patients répartis en trois groupes : deux groupes de 50 patients chacun qui recevront une injection de cellules souches à des doses différentes et un groupe de 50 patients témoins qui ne recevront pas d’injection de cellules souches.


Inserm


Squelette et Mouvement – Interview - 4 min - vidéo extraite de la série POM Bio à croquer – 2013
Des travaux suggèrent que les cellules souches mésenchymateuses peuvent favoriser la formation de nouveaux vaisseaux sanguins, sans toutefois pouvoir se différencier en cellules de vaisseaux sanguins. Cet effet serait dû à la production de facteurs de croissance qui favorisent localement le développement de cellules. Cette propriété justifie des travaux dans le domaine cardiovasculaire, visant à favoriser la croissance des tissus lésés après un infarctus du myocarde, un accident vasculaire cérébral ou une artériopathie des membres inférieurs. Un certain nombre d’essais cliniques précoces sont en cours dans ces indications. Une étude de phase II dans l’AVC ischémique est ainsi en cours à l’hôpital de San Diego (Etats-Unis), avec des cellules souches mésenchymateuses allogéniques produites par la société Stemedica. Une autre étude est menée en Corée (au Samsung medical center), avec des cellules souches mésenchymateuses autologues.
Un essai de phase II démarre, par ailleurs, à l’Institut de recherche de l’hôpital d’Ottawa (Canada), dans la sclérose en plaques. Il vise à évaluer le bénéfice des propriétés neuroprotectrices des cellules souches mésenchymateuses autologues. A l’hôpital de Boston et à la Mayo Clinic (Rochester, Etats-Unis), un autre essai de phase II cible la sclérose latérale amyotrophique, toujours avec des cellules souches mésenchymateuses autologues.

Un réseau national d’expertises complémentaires
En France, au CHU de Montpellier, il existe une plateforme nationale de thérapie cellulaire fondée sur l’utilisation des cellules souches mésenchymateuses adultes : ECELLFRANCE. Son objectif est d’harmoniser et d’optimiser les étapes nécessaires au développement des cellules souches médicament et de la médecine régénératrice. Elle propose à toute équipe académique ou industrielle d’accélérer son programme de R&D depuis la validation du projet jusqu’aux essais cliniques de phase I et II.

Les thérapies cellulaires "validées"
Des traitements par thérapie cellulaire sont d’ores et déjà autorisés par les autorités de santé :
*         L’utilisation de cellules souches cutanées pour reconstituer des feuilles d’épiderme en laboratoire et les greffer chez des grands brulés est pratiquée depuis les années 70.
*         L’administration de cellules souches hématopoïétiques (greffe de moelle osseuse) est utilisée dans le traitement d’hémopathies malignes depuis les années 80.
*         Au Canada, la perfusion de cellules souches mésenchymateuses allogéniques est autorisée pour lutter contre la maladie du greffon contre l’hôtemaladie du greffon contre l’hôteComplication grave qui survient suite à une greffe de moelle osseuse, lorsque les cellules immunitaires du donneur se mettent à attaquer l’organisme du receveur.

chez l’enfant (GvHD).
*         En Corée, l’injection de cellules souches mésenchymateuses allogéniques est autorisée dans l’arthrose depuis 2013.
*         En Europe, Holoclar est le premier médicament de thérapie cellulaire à avoir reçu une autorisation de mise sur le marché (en février 2015). Il est indiqué en cas de brûlure ou de lésions de la cornée. Il repose sur le prélèvement de cellules souches limbiques (en périphérie de la cornée) chez le patient et leur différenciation ex vivo en cellules épithéliales de la cornée destinées à être réimplantées.

Et demain

Neurones dérivés de cellules souches induites à la pluripotence à partir de prélèvements réalisés chez des patients atteints de progeria. L’ADN est marqué en bleu, les neurones en vert (marquage de la protéine Tuj1). Le marquage de la lamine A devrait être en rouge, mais il est totalement absent dans cette population cellulaire. © Inserm, X. Nissan
Les indications de la thérapie cellulaire sont innombrables et les promesses sont réelles dans de nombreux domaines. Des champs cliniques comme celui de maladies neurodégénératives (maladies de Parkinson ou d’Alzheimer) ou des dégénérescences musculaires (myopathie de Duchenne) pourraient être concernés si les chercheurs parviennent à produire différents sous-types de neurones en quantité importante et des cellules musculaires squelettiques. Et comment ne pas également imaginer la possibilité de produire des cellules sanguines, y compris des plaquettes
plaquettes
Aussi appelées thrombocytes, ces cellules du sang jouent un rôle primordial dans la coagulation.
, en quantité illimitée pour couvrir les besoins en sang des hôpitaux ? Toutes les hypothèses sont désormais permises.

 

DOCUMENT      inserm     LIEN 

 
 
 
 

Identification de marqueurs précoces de maladies neurodégénératives chez des personnes à risque

 

 

 

 

 

 

 

Identification de marqueurs précoces de maladies neurodégénératives chez des personnes à risque
COMMUNIQUÉ | 12 DÉC. 2017 - 15H32 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE



Une étude promue par l’AP-HP a montré pour la première fois que des individus asymptomatiques risquant de développer une dégénérescence fronto-temporale (DFT) ou une sclérose latérale amyotrophique (SLA), car porteurs de la mutation c9orf72, présentent des altérations cognitives, anatomiques et structurelles très précoces, avant l’âge de 40 ans.
L’identification de ces marqueurs avant l’apparition des symptômes de la maladie est une découverte majeure car de tels marqueurs sont essentiels pour la mise au point d’essais thérapeutiques et le suivi de leur efficacité.
Cette étude menée à l’Institut du cerveau et de la moelle épinière – Inserm / CNRS / UPMC – à l’hôpital de la Pitié-Salpêtrière AP-HP, par le Dr Isabelle Le Ber, Anne Bertrand et Olivier Colliot (chercheur CNRS),  a bénéficié d’un financement dans le cadre du programme de recherche translationnelle en santé (PRT-S).
Ses résultats ont été publiés le 02 décembre 2017 dans JAMA Neurology.

Les dégénérescences fronto-temporales (DFT) et la sclérose latérale amyotrophique (SLA) sont des maladies neurodégénératives pouvant avoir une cause génétique commune, dont la plus fréquente est une mutation du gène c9orf72. Certains développements précliniques ciblant ce gène offrent des perspectives thérapeutiques encourageantes. Afin de pouvoir tester l’efficacité de ces thérapeutiques potentielles, l’identification de marqueurs pour détecter l’apparition des lésions au stade précoce et suivre l’évolution de la maladie est indispensable.
En effet, il est maintenant établi que les maladies neurodégénératives causent des modifications biologiques et morphologiques plusieurs années avant l’apparition des premiers symptômes de la maladie. Ces stades pré-symptomatiques représentent probablement la meilleure fenêtre d’intervention thérapeutique pour stopper le processus neurodégénératif avant qu’il ne cause des dommages irréversibles au niveau du cerveau. L’objectif de ce travail est donc d’identifier des marqueurs du début du processus lésionnel, de la conversion clinique, c’est-à-dire de l’apparition des premiers symptômes cliniques et de la progression de la maladie.

Cette étude multimodale a été réalisée à l’hôpital de la Pitié-Salpêtrière, AP-HP, sur une large cohorte de 80 personnes asymptomatiques porteuses de la mutation c9orf72, donc à risque de développer une DFT ou une SLA dans quelques années. Ces personnes ont été suivies pendant 36 mois (analyses neuropsychologiques, structurelles et micro-structurelles de la substance blanche du cerveau, du métabolisme cérébral, examens biologiques et cliniques) afin d’identifier des marqueurs cliniques, biologiqu

Les résultats de cette étude ont montré pour la première fois des altérations cognitives et structurelles très précoces chez des sujets de moins de 40 ans, qui sont détectables en moyenne 25 ans avant le début des symptômes. Des troubles praxiques (difficultés dans la réalisation de certains gestes) apparaissent de façon précoce. Ce ne sont pas des symptômes classiques des DFT, et l’une des hypothèses est qu’ils pourraient être dus à une modification précoce du développement de certaines régions cérébrales, peut-être liée à la mutation. De façon intéressante, des altérations de la substance blanche du cerveau, détectées précocement par l’IRM, prédominent dans les régions frontales et temporales, les régions cibles de la maladie, et pourraient donc constituer l’un des meilleurs biomarqueurs de la maladie. Dans son ensemble, cette étude apporte une meilleure compréhension du spectre de la maladie causée par des altérations de c9orf72.

La mise en évidence de biomarqueurs à des stades très précoces est un premier pas vers le développement d’outils nécessaires à l’évaluation de nouveaux traitements. En effet, afin de prévenir l’apparition de la maladie il est nécessaire d’administrer des médicaments aux stades présymptomatiques et donc de développer des outils qui permettent de savoir quand commencer le traitement et de mesurer son efficacité
.

 

DOCUMENT     INSERM     LIEN

 

 

 
 
 
 

PARKINSON

 

 

 

 

 

 

 

Un outil pour prédire le déclin cognitif dans la maladie de Parkinson 10 ans après son apparition


COMMUNIQUÉ | 29 JUIN 2017 - 14H21 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


Une étude internationale à laquelle ont participé des médecins de l’AP-HP et des chercheurs de l’Inserm, de l’UPMC, et du CNRS au sein de l’ICM s’est penchée sur l’identification d’un score clinico-génétique prédictif du déclin cognitif chez les patients atteints de la maladie de Parkinson. Le déclin cognitif est une des caractéristiques les plus handicapantes qui se manifeste chez certains patients au cours de la maladie de Parkinson. Pouvoir prédire son apparition dix ans après le déclenchement de la maladie représente un intérêt majeur pour la prise en charge et la mise en place d’essais cliniques ciblés pour ces patients.
Cette étude, publiée dans The Lancet Neurology et financée notamment par les NIH, associe des équipes américaines de  la Harvard Medical School et de Brigham and women’s hospital (Boston).

Après quelques années de vie avec la maladie de Parkinson, les patients peuvent souffrir de déficits des fonctions cognitives, en plus des troubles du mouvement qui caractérisent la maladie. Dans cette étude, les chercheurs ont construit un algorithme pour identifier les patients les plus sujets au déclin cognitif. Il a été conçu à partir des données cliniques et génétiques issues de 9 cohortes de patients atteints de la maladie de Parkinson en Europe et en Amérique du Nord, soit près de 3200 patients suivis pendant 30 ans, de 1986 à 2016.

En France, la cohorte DIG-PD promue par l’AP-HP et coordonnée par le Pr Jean-Christophe Corvol du Département de Neurologie et responsable du Centre d’Investigation Clinique à l’hôpital de la Pitié Salpêtrière, est issue du projet, appelé « Interaction gène/médicament et maladie de Parkinson – DIG-PD ». La cohorte française a suivi plus de 400 patients annuellement pendant 6 années.
Plusieurs facteurs ont été pris en compte et analysés. L’âge de déclenchement de la maladie, la sévérité motrice et cognitive, le niveau d’éducation, le sexe, la dépression ou encore la mutation du gène de la β-glucocérébrosidase s’avèrent être les prédicteurs les plus importants du déclin cognitif et ont été ajoutés au modèle prédictif développé par les chercheurs. L’étude révèle également que l’éducation aurait un rôle dans la survenue du déclin et que ce facteur serait associé à une « réserve cognitive » dont les patients disposeraient.

A partir de ces données, le score clinique développé par les chercheurs prédit de manière précise et reproductible l’apparition des troubles cognitifs dans les 10 ans qui suivent le déclenchement de la maladie. Il a été mis au point grâce à des analyses génétiques et cliniques issues des 9 cohortes, soit plus de 25 000 données associées analysées.
Cet outil représente un intérêt majeur pour le pronostic du déclin cognitif chez les patients atteints de la maladie de Parkinson. Il pourrait également permettre d’identifier de manière plus précise les patients à haut risque de développer de tels troubles pour leur permettre d’anticiper une prise en charge adaptée ou de participer à des essais cliniques ciblés.


DOCUMENT      inserm     LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google