ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

L'hydrogène

 


 

 

 

 

 

L'hydrogène

Publié le 10 mai 2022

Potentiellement inépuisable, non-émetteur de gaz à effet de serre… L’hydrogène n’est pas une source d’énergie mais un « vecteur énergétique » : il doit être produit puis stocké avant d’être utilisé. Il pourrait jouer à l’avenir un rôle essentiel dans la transition énergétique en permettant de réguler la production d’électricité produite par les énergies renouvelables intermittentes (solaire et éolien).

L’HYDROGÈNE,
UN VECTEUR ÉNERGÉTIQUE

L’hydrogène est l’élément chimique le plus simple : son noyau se compose d’un unique proton et son atome ne compte qu’un électron. La molécule de dihydrogène (H2) est constituée de deux atomes d’hydrogène. On parle communément d’hydrogène pour désigner en fait le dihydrogène.
Vidéo
L'hydrogène, vecteur d'énergie du futur ?
<div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div>



La combustion d’1 kg d’hydrogène libère presque 4 fois plus d’énergie que celle d’1 kg d’essence et ne produit que de l’eau : 2H2 + O2 -> 2H2O.
L’hydrogène est très abondant à la surface de la Terre mais n’existe pas à l’état pur. Il est toujours lié à d’autres éléments chimiques, dans des molécules comme l’eau, les hydrocarbures. Les organismes vivants (animal ou végétal) sont également composés d’hydrogène. La biomasse constitue donc une autre source potentielle d’hydrogène.
Extraire l’hydrogène de ces ressources primaires que sont les hydrocarbures, la biomasse ou encore l’eau nécessite un apport en énergie. Comme pour l’électricité, on considère ainsi que l’hydrogène est un « vecteur » énergétique.
L’hydrogène pourrait être quasi-inépuisable, à condition de savoir le produire en quantité suffisante à un coût compétitif et, idéalement, à partir d’énergie bas carbone (nucléaire et renouvelables).
On appelle « technologies de l’hydrogène » l’ensemble des technologies étudiées pour produire l’hydrogène, le stocker et le convertir à des fins énergétiques.

PRODUCTION DE L’HYDROGÈNE
Produire l’hydrogène à partir d’hydrocarbures
Aujourd’hui, 95 % du dihydrogène est produit par « vaporeformage » de combustibles fossiles : cette réaction chimique casse les molécules d’hydrocarbures en présence de vapeur d’eau, de chaleur et d’un catalyseur, pour en libérer l’hydrogène. Mais cette méthode a l’inconvénient de produire du dioxyde de carbone.

Produire l’hydrogène à partir d’eau
L’électrolyse permet de décomposer chimiquement l’eau en dioxygène et dihydrogène grâce à l’action d’un courant électrique. Différentes voies d’électrolyse sont étudiées, avec l’hypothèse d’une électricité d’origine nucléaire ou renouvelable. La quantité d’énergie électrique nécessaire à l’électrolyse dépend des conditions de pression et de température du procédé utilisé. De façon générale, la recherche porte sur des matériaux performants et bon marché pour réaliser des électrolyseurs.

Produire l’hydrogène à partir de la biomasse
La biomasse (bois, paille, etc.) pourrait constituer une source potentielle importante d’hydrogène : la gazéification à la vapeur d’eau de cette biomasse génère un mélange appelé « gaz de synthèse », constitué principalement de monoxyde de carbone et de dihydrogène, que l’on purifie ensuite pour éliminer les polluants. Cette solution permet d’obtenir un bilan effet de serre quasiment neutre car le dioxyde de carbone émis par la combustion du monoxyde de carbone est équivalent à celui qui aurait été dégagé par la dégradation de la biomasse si elle n’avait pas été gazéifiée. On cherche aussi à faire produire de l’hydrogène par des microalgues ou des bactéries qui utilisent la lumière et des enzymes spécifiques : les hydrogénases. Une voie de recherche prometteuse consiste à mimer chimiquement ces réactions, pour développer des réacteurs bio-inspirés de production d’hydrogène.

Extraire l’hydrogène de gisements sous-marins
Enfin, une autre approche vise à exploiter des sources d’hydrogène naturel. L’existence de gisements le long des chaînes volcaniques sous-marines est connue mais ceux-ci sont inatteignables. Aujourd’hui, les chercheurs s’intéressent plutôt à la géologie de certaines couches « terrestres » qui dégazeraient et accumuleraient en leur sein de l’hydrogène.

STOCKAGE DE L’HYDROGÈNE
L’hydrogène ne peut jouer son rôle de vecteur d’énergie que si l’on peut le stocker efficacement, à moindre coût et dans des conditions de sécurité acceptables.
A température ambiante et pression atmosphérique, l’hydrogène se présente sous forme de gaz très volatile, en raison de la petite taille de sa molécule. L’enjeu est de créer des réservoirs compacts et à bas coût.
Différents modes de stockage sont étudiés.
Lorsqu’il n’est pas nécessaire de réduire le volume de stockage (par exemple, pour des applications stationnaires), on peut l’envisager sous forme gazeuse à une pression relativement basse (75 bars). Ce moyen de stockage est peu coûteux et parfaitement maîtrisé.
Le stockage sous forme liquide à basse pression est actuellement principalement réservé à certaines applications de très hautes technologies comme la propulsion spatiale. Il permet de stocker de grandes quantités d’hydrogène dans un volume restreint. Les réservoirs actuels conditionnent l’hydrogène à – 253 °C sous 10 bars. Mais il est impossible d’éviter les fuites : même très bien isolés, les réservoirs absorbent de la chaleur qui vaporise lentement le liquide.
Afin d’atteindre une compacité satisfaisante tout en évitant les inconvénients liés aux très basses températures du stockage à l’état liquide, on cherche à développer le stockage à l’état gazeux sous haute pression (700 bars). Il s’agit de concilier imperméabilité, résistance aux hautes pressions et résistance aux chocs en travaillant sur une architecture et des matériaux adaptés au réservoir.
Enfin, une voie de recherche plus récente porte sur l’utilisation de matériaux appelés hydrures qui ont la capacité d’absorber et désorber l'hydrogène de manière réversible, sous condition de température (stockage « solide »). Le stockage dans les hydrures est le moyen le plus efficace pour obtenir une forte densité volumique d'énergie. Mais cela se fait au détriment du poids, puisqu’il faut ajouter au bilan le poids du matériau dans lequel l'hydrogène s'insère.
Selon l’utilisation visée de l’hydrogène, les critères de coût, performance, compacité ou poids de ces différentes technologies sont arbitrés.

UTILISATION DE L’HYDROGÈNE
Le développement de la filière hydrogène repose en partie sur la technologie de la pile à combustible. Le principe de la pile à combustible est l'inverse d'une électrolyse. La réaction chimique produite par l'oxydation et la rencontre du dihydrogène et du dioxygène produit de l'électricité, de l'eau et de la chaleur.
Il existe plusieurs types de piles à combustible qui se différencient par leur électrolyte. Celui-ci définit la température de fonctionnement et donc les applications. La R&D porte actuellement sur les améliorations techniques (compacité, rendement énergétique, résistance à l’usure, fonctionnement sur de nombreux cycles…) ainsi que sur la baisse des coûts de production.

 

 DOCUMENT     cea         LIEN

 
 
 
 

oxydoréduction

 

 

 

 

 

 

 

oxydoréduction

LE PHÉNOMÈNE D’OXYDORÉDUCTION

L'importance de l'oxydoréduction, phénomène chimique ou électrochimique, est considérable tant par ses effets spontanés, bénéfiques (photosynthèse) ou néfastes (corrosion), que par ses applications multiples dans la vie quotidienne (piles, accumulateurs…) ou dans l'industrie chimique et électrochimique.
Depuis la découverte du feu, l'homme a su mettre à profit la combustion du bois pour obtenir de l'énergie thermique ainsi que la réduction des minerais lors de la préparation du fer, sans connaître les réactions chimiques mises en jeu. Ce n'est qu'à la fin du xviiie s. que la combustion est apparue comme une oxydation, c'est-à-dire une combinaison avec un élément de l'air, l'oxygène.
Au sens strict, l'oxydation est la fixation d'oxygène sur un corps, la réduction, le phénomène inverse ; ces deux phénomènes sont d'ailleurs généralement couplés. Ainsi, dans la réaction 2CuO + C → 2Cu + CO2, on assiste simultanément à l'oxydation du carbone et à la réduction de l'oxyde de cuivre ; ce dernier est l'oxydant (noté Ox), le carbone étant le réducteur (Red) ; la réaction est une oxydoréduction.
Plusieurs éléments, tels les halogènes, le soufre, etc., se comportent dans certaines de leurs réactions comme l'oxygène ; on convient de dire que, par exemple, la combustion du sodium dans le chlore (qui donne Na+Cl−) est une oxydation du métal, au même titre que sa combustion dans l'oxygène. La transformation du sodium en ions Na+ est une oxydation du sodium ; elle est obtenue par enlèvement d'électrons. Corrélativement, la réduction du chlore en ions chlorure Cl− résulte de la fixation d'électrons. Au cœur de l'oxydoréduction se trouve donc l'électron, particule très mobile et omniprésente dans toutes les formes de la matière.

LE COUPLE REDOX

Le sens du terme oxydoréduction, contraction de « oxydation » et de « réduction », a évolué au cours du temps : ainsi pour Antoine Laurent de Lavoisier, le terme oxydation signifiait fixation d'oxygène, et le mot réduction désignait la perte d'oxygène, par exemple :
S + O2 → SO2 (oxydation),
2HgO → 2Hg + O2 (réduction).
Cependant, on constate que dans de nombreux cas l'expression ne porte que sur l'évolution chimique d'un seul des deux constituants de la réaction ; ainsi en est-il de la réduction de l'oxyde de cuivre II par le dihydrogène :
CuO + H2 → Cu + H2O,
où une ambiguïté apparaît, dans les termes, car on néglige ici le dihydrogène qui, lui, subit une oxydation. En fait, et d'une manière générale, toute réaction de réduction est accompagnée d'une réaction d'oxydation, et réciproquement. Seule l'électrochimie permet de les séparer dans certaines conditions.
Mais il apparaît que la notion d'oxydation peut s'appliquer aussi à la réaction :
Li + 1/2 Cl2 → LiCl,
comparable à la réaction :
2Li + 1/2 O2 → Li2O ;
dans la première, le lithium (Li) est transformé en Li+ par la perte d'un électron (e−), récupéré par le dichlore ; dans la seconde, deux électrons perdus par deux atomes Li sont fixés par l'oxygène pour former l'ion O2− ; dans les deux cas, on dit qu'il s'agit d'une oxydation du lithium due à une perte d'électrons, accompagnée d'une réduction du chlore ou de l'oxygène due, elle, à un gain d'électrons.
Une autre façon d'exprimer le phénomène est de dire que le lithium est un réducteur, c'est-à-dire une espèce chimique pouvant fournir un électron, et que le dichlore et le dioxygène sont des oxydants susceptibles de capter un ou des électrons. Li et Li+ forment ce qu'on appelle un couple redox (abréviation de réduction-oxydation), noté Li+/Li (soit Ox/Red).
On l'écrit : Li ⇌ Li+ + e−,
Li étant le réducteur, et Li+ l'oxydant. La double flèche indique que, dans certaines conditions, on sait réaliser :
Li+ + e− → Li (ce qui est du domaine de l'électrochimie).
D'une manière générale, on peut écrire les demi-réactions d’oxydoréduction suivantes :
Red1 ⇌ Ox1 + n1e−
et :
Ox2 + n2e− ⇌ Red2.

LES RÉACTIONS D'OXYDORÉDUCTION
Les équations chimiques correspondant aux réactions d'oxydoréduction peuvent être décrites en utilisant les couples redox, sous réserve de satisfaire à certaines conditions thermodynamiques, et de telle sorte que les électrons fournis par le réducteur 1 (Red1) soient récupérés par l'oxydant 2 (Ox2). Ainsi, l'équation chimique générale d'oxydoréduction :
n2Red1 + n1Ox2 ⇌ n2Ox1 + n1Red2
fait-elle intervenir les deux couples redox suivants :
(Red1 ⇌ Ox1 + n1e−) . n2
et
(Ox2 + n2e− ⇌ Red2) . n1,
dont l'addition permet de retrouver l'équation précédente. Cette façon de procéder est aisée quand interviennent des réactions ioniques qui permettent de connaître n1 et n2 sans difficulté. Par exemple, l'action d'un acide en milieu aqueux sur le zinc fait intervenir deux couples redox bien connus :
Zn → Zn2+ + 2e−,
(H3O+ + e− → 1/2 H2 + H2O) . 2.
Dans les conditions thermodynamiques convenables, les deux réactions se produisent dans le sens 1, donnant la réaction globale :
Zn + 2 H3O+ → Zn2+ + H2 + 2 H2O.

LE DEGRÉ D'OXYDATION
Il existe aussi des couples redox tels que :
Fe2+ ⇌ Fe3+ + e−, où l'on voit aisément que Fe3+ est plus oxydé que Fe2+, puisqu'il résulte de la perte d'un électron par ce dernier.
Mais, avec des ions comme Cl−, ClO−,ClO3−, ClO4−, il est difficile de distinguer les éléments les plus oxydés.
Les chimistes ont été ainsi amenés à attribuer un degré d'oxydation, ou nombre d'oxydation (NO), positif ou négatif, aux différents éléments et à leurs ions lorsqu'ils sont engagés dans divers composés ; pour le distinguer de la charge des ions, on le représente par un chiffre romain, précédé du signe + ou −. Pour déterminer ce nombre formel, on utilise les règles suivantes :
– tout élément à l'état de corps pur a un nombre d'oxydation 0 (c'est le cas de O dans O2, de H dans H2, de Fe dans le fer métal) ;
– dans une espèce chimique non chargée, la somme algébrique des NO des éléments constitutifs est égale à 0 (c'est le cas pour H et O dans H2O, pour Na et Cl dans NaCl);
– dans une espèce ionique, la somme algébrique des NO des éléments constitutifs est égale à la charge de l'ion. Ainsi, dans ClO−, la somme algébrique des NO de Cl et de O est −1 ; il en est de même dans ClO4−.
Partant de ces règles, le NO d'un élément dans une molécule ou dans un ion est, en valeur absolue, égal au nombre d'électrons qu'il aurait fixés, si c'est l'élément le plus électronégatif, ou qu'il aurait perdus, si c'est l'élément le moins électronégatif, si on considérait que toutes ses liaisons sont ioniques. On lui attribue le signe − s'il a fixé les électrons, le signe + s'il les a perdus. Plus le nombre d'oxydation est élevé (en valeur algébrique), plus l'élément est oxydé ; plus il est bas, plus l'élément est réduit. Par exemple :
H+, Li+, Na+, … NO = + I ;
Al3+, Te3+, Cr3+, … NO = + III ;
H−, F−, Cl−, … NO = − I ;
O2−, S2−, … NO = − II.
Dans le cas des ions simples, le NO est donc égal à la charge de l'ion.

L'ÉQUATION DE NERNST
Si le système redox :
Ox + ne− ⇌ Red,
obéit aux lois de la thermodynamique (les phénomènes cinétiques, très importants dans ce domaine, risquent de masquer le comportement thermodynamique), une expression relativement simple, l'équation de Nernst, lie le potentiel ET de ce système (où la concentration de l'oxydant et celle du réducteur ne sont pas égales à 1 mol . −1) au potentiel standard E0t (où la concentration de l'oxydant et celle du réducteur sont égales à 1 mol . l−1) et au nombre n d'électrons échangés à une température donnée T :
Et = E0t + (RT/nΦ) × log [Ox]/[Red],
où E0t, potentiel standard du système (sous une pression de 1 bar), est une constante, consignée dans des tables, qui en caractérise la nature chimique à une température donnée T exprimée en degrés Kelvin (si T = 298 K, E0 est le potentiel standard normal),
R la constante des gaz parfaits (8,31 J . K−1 . mol−1),
Φ la constante de Faraday (96 500 C . mol−1),
[Ox] et [Red] correspondant aux activités de Ox et de Red que l'on assimile ici aux concentrations [Ox] et [Red] en mol . l−1.
À 298 K (25 °C), cette expression s'écrit souvent sous la forme :
Et = E0t + (0,06/n) × log [Ox]/[Red],
où les potentiels sont exprimés en volts (V).

PRÉVISION DES RÉACTIONS
En solution, lorsque l’on a en présence deux couples rédox Ox1/Red1 et Ox2/Red2, de potentiels standards respectifs E01 et E02, et que E01 > E02, c'est l'oxydant 1, appartenant au couple redox 1 – dont le potentiel est le plus élevé – qui oxyde le réducteur 2 appartenant au couple redox 2 – dont le potentiel est le moins élevé.

APPLICATIONS
Les réactions d'oxydoréduction interviennent dans nombre de processus naturels ou artificiels, tant dans des réactions en solution qu'en phase solide. Tel est le cas de la plupart des réactions métallurgiques permettant l'élaboration des métaux à partir de leurs minerais, comme celle citée en introduction. Ces réactions, dont certaines étaient connues depuis l'Antiquité, mettaient déjà en pratique des principes thermodynamiques qui ne furent élucidés que bien plus tard. Cela explique que, au cours de l'histoire, les métaux ont été élaborés dans l'ordre de difficulté croissante de réduction, depuis le cuivre, vers 4000 avant J.-C., jusqu'à l'aluminium, en 1825. Les phénomènes d'oxydoréduction ont également un rôle crucial en biologie. Ils permettent notamment la respiration cellulaire des organismes vivants.

 

  DOCUMENT   larousse.fr    LIEN

 
 
 
 

L’essentiel sur… le cycle du carbone

 


 

 

 

 

 

L’essentiel sur… le cycle du carbone


Publié le 4 mars 2015

Le carbone est présent dans tous les grands « réservoirs naturels » de notre planète : atmosphère, océan, végétation, etc. Les échanges entre ces réservoirs se font selon un cycle – dit « cycle du carbone » – qui constitue un élément essentiel du changement climatique en cours.

On distingue quatre grands réservoirs naturels de carbone sur Terre : l’atmosphère, la lithosphère (sols et sous-sols), l’hydrosphère (mers, océans, lacs et rivières) et la biosphère (végétaux, animaux et autres organismes vivants). Si la quantité globale de carbone reste stable sur notre planète, sa répartition entre ces quatre sphères varie continuellement au fil d’échanges et de réactions biologiques, chimiques ou géologiques. Ces échanges se font selon un cycle d’émission et de stockage du carbone dont les variations ont un effet déterminant sur l’évolution globale du climat.

UN CYCLE
À DIFFÉRENTES ÉCHELLES DE TEMPS
Le cycle du carbone est décrit par un ensemble d’interactions entre le monde du vivant, l’air, les sols, le sous-sol, et les océans. Les réservoirs de carbone à considérer ne sont pas les mêmes selon les échelles de temps auxquelles on s’intéresse :
*         A l’échelle des temps géologiques (> 1 million d’années) : l'érosion chimique humide des roches pompe du dioxyde de carbone (CO2) de l’atmosphère. Ce carbone est ensuite amené à l’océan sous forme dissoute par les rivières et les fleuves. Il peut sédimenter au fond des océans et être enfoui dans la lithosphère. Sur ces échelles de temps, le cycle du carbone est bouclé par des émissions de CO2 dues aux éruptions volcaniques et aux émissions des surfaces océaniques. Ce cycle « lent » du carbone a vu la formation progressive des réserves d’hydrocarbures après enfouissement de quantités colossales de matières organiques durant plus de 300 millions d’années. Ce sont ces réserves de combustibles fossiles que nous brûlons activement depuis 200 ans et qui émettent du CO2 dans l’atmosphère. Ce CO2 additionnel est le principal facteur de réchauffement du climat depuis 60 ans (effet de serre).
*         À l’échelle du dernier million d’années : les concentrations de CO2 et de méthane (CH4) dans l’atmosphère ont varié de façon naturelle : les teneurs sont plus basses pendant les périodes glaciaires que pendant les périodes interglaciaires. Ces variations s’expliquent principalement par les modifications de la répartition de la végétation et des zones humides à la surface de la Terre, et par la modification de la capacité d’absorption de carbone par l’océan.
*         A l’échelle séculaire ou saisonnière : le cycle « lent » du carbone ne représente plus l’essentiel des échanges et un cycle « rapide » prend le relai entre les océans, l’atmosphère, la biosphère et les sols. Ce cycle rapide implique les plantes qui absorbent du CO2 lors de leur croissance (photosynthèse) et qui, comme les animaux, respirent et rejettent également du CO2. Lorsqu’elle meurt, la végétation relâche une partie de ce carbone vers l’atmosphère, sous forme de CO2 ou de méthane, mais une autre partie est stockée dans le sol.
*        
Actuellement, la végétation et les sols se comportent en puits de carbone et stockent une partie du carbone atmosphérique (sous forme de matière organique, comme le bois ou la tige des feuilles). Une autre partie du carbone atmosphérique est stockée sous forme de CO2 dissous dans les océans, ce qui par ailleurs cause leur acidification. Une fraction de ce carbone dissous est utilisée par les micro-organismes marins pour fabriquer leurs coquilles carbonatées. Ces coquilles s’accumulent dans les sédiments océaniques à la mort des organismes. A l’inverse, les océans peuvent ré-émettre du CO2 vers l’atmosphère (dégazage), notamment dans les eaux les plus chaudes. À l’échelle saisonnière, des variations de la concentration en CO2, en particulier dans l’hémisphère nord, ont été mises en évidence, avec des concentrations plus faibles en été qu’en hiver. Ce phénomène naturel est en lien avec l’intensification de la photosynthèse durant les périodes de printemps et d’été aux latitudes moyennes et hautes, et sa diminution pendant l’hiver. Dans le même temps, la respiration des végétaux et la décomposition de la matière organique du sol émet du CO2 dans l’atmosphère toute l’année, mais avec des flux plus élevées pendant l’été et l’automne.

ENJEUX :
ÉTUDIER LES FLUX ANTHROPIQUES / MAINTENIR L’ÉQUILIBRE DU CYCLE
Depuis les années 1850 et la révolution industrielle, la quantité de carbone dans l'atmosphère augmente (CO2 et CH4) à cause des activités humaines : consommation d’énergies fossiles (charbon, gaz, pétrole) et développement de l’agriculture (déforestation, changement de l’usage des sols…). Ces émissions sont devenues tellement importantes ces dernières décennies qu’elles modifient le rythme naturel du cycle du carbone. L’ampleur des conséquences des activités humaines a alerté la communauté internationale. Elle s’appuie aujourd’hui sur les travaux des chercheurs pour étudier précisément l’impact de l’Homme sur le cycle du carbone et les rétroactions possibles sur le climat.
Le cycle du carbone est donc complexe. Au total, les puits biosphériques et océaniques absorbent en moyenne l’équivalent de 55 % des émissions anthropiques, avec des variations selon les années. Le reste, soit l’équivalent de 45 % des émissions anthropiques, s’accumule donc dans l’atmosphère. Cela représente actuellement une augmentation annuelle de 0.6 % par an de la teneur atmosphérique en CO2.
Bilan atmosphérique : depuis le début de l'ère industrielle la concentration moyenne de CO2 a augmenté de 42 % ; les interactions de l’Homme avec l’environnement rajoutent chaque année 20 milliards de tonnes de CO2 dans l’atmosphère.

R&D :
ÉTUDIER LES ÉVOLUTIONS
DU CYCLE ET SES CONSÉQUENCES
Afin de mieux connaître le cycle du carbone, sa dynamique, et simuler le climat du futur, les chercheurs développent différents outils et méthodes pour comprendre les mécanismes du système climatique et en particulier ceux du cycle du carbone.
*         La paléoclimatologie est l’étude des climats anciens. Grâce aux prélèvements de glaces notamment aux pôles, de sédiments marins ou lacustres, ou d’autres archives climatiques naturelles (telles que les « spéléothermes » ou stalactites) en différents endroits de la Terre, les climatologues reconstituent les variations passées du climat. Ils analysent son fonctionnement et son évolution au cours du temps, aussi bien pendant les cycles lents et rapides évoqués ci-dessus. Des techniques précises de datations sont développées pour dater les phénomènes.
*         Les réseaux d’observation du CO2 puis du CH4, mis en place depuis plus de 50 ans permettent maintenant un suivi précis et continu des différentes composantes du cycle du carbone : mesure de la pression partielle de CO2 dans les océans, suivi des gaz à effet de serre dans l’atmosphère, mesure des échanges de carbone à l’échelle des écosystèmes (forêt, arbre, sols par exemple). Ces recherches sont menées dans le cadre de programmes nationaux ou internationaux (comme par exemple l’infrastructure de recherche européenne Icos, pour Integrated Carbon Observation System).
*         Des modèles numériques complètent les observations des évolutions actuelles et passées du climat et permettent de mieux comprendre le fonctionnement du système climatique, ou de certaines de ses composantes comme le cycle du carbone. Les données permettent de valider les modèles. Les supercalculateurs génèrent alors des simulations d’évolution du climat, passé, présent et futur à partir de scénarii de départ qui peuvent être modulés par les chercheurs (en modifiant par exemple les quantités de carbone rejetées dans l’atmosphère dans l’avenir par les activités humaines).

 

  DOCUMENT     cea         LIEN
 

 
 
 
 

PHOTOSYNTHÈSE

 

 

 

 

 

 

 

photosynthèse

Consulter aussi dans le dictionnaire : photosynthèse
Cet article fait partie du dossier consacré à la nutrition.

Chez les végétaux et certaines bactéries, processus de fabrication de matière organique à partir du gaz carbonique de l’atmosphère et (cas principal) d’eau, utilisant la lumière solaire comme source d’énergie et produisant un dégagement d’oxygène. [Synonyme vieilli : assimilation chlorophyllienne.]

1. PRINCIPE
La photosynthèse, qui signifie littéralement « synthèse [de matière organique] par la lumière », correspond au piégeage de l’énergie lumineuse provenant du Soleil, et de son stockage sous la forme de matière organique (des glucides notamment). Ce faisant, les végétaux et les bactéries photosynthétiques produisent leurs propres composants à partir de l’énergie solaire (on dits qu’ils sont autotrophes).

La photosynthèse des végétaux et des cyanobactéries consomme de l’eau (H2O), du dioxyde de carbone (CO2) et produit de l’oxygène (O2) – des expériences de marquage radioactif ont montré que cet oxygène provient de l’eau, et non du CO2 absorbé. Ce faisant, elle enrichit l'atmosphère en oxygène. Consommé par les êtres vivants (respiration), cet oxygène atmosphérique est renouvelé en permanence par l’activité de l’ensemble des organismes photosynthétiques – s’il n’y avait plus de photosynthèse sur Terre, son stock finirait par s’épuiser. Cas particulier, la photosynthèse des bactéries pourpres et des bactéries vertes ne rejette pas d’oxygène, mais d’autres sous-produits (essentiellement du soufre [S]).

L’énergie nécessaire à la photosynthèse est fournie par le rayonnement du Soleil. La lumière est donc un facteur décisif dans le processus (c’est pourquoi, par exemple, une plante d’appartement placée dans une pièce sombre dépérit rapidement). L'intensité lumineuse optimale est différente d'une espèce végétale ou bactérienne à une autre. Les diverses radiations qui composent la lumière blanche ont une action spécifique : les radiations rouges (600 nm) et indigo (400-450 nm), absorbées par la chlorophylle, sont les plus efficaces ; les vertes ne sont d'aucun effet.

2. LOCALISATION

Chez les plantes et les algues, la photosynthèse s'effectue au niveau des parties vertes, et tout particulièrement des feuilles : leurs cellules renferment en effet de petites usines à photosynthèse, les chloroplastes, contenant eux-mêmes de la chlorophylle, un pigment de couleur verte qui permet la captation de l’énergie lumineuse. Chez les végétaux qui ne sont pas de couleur verte – par exemple les plantes à feuilles pourpres –, le processus et la localisation sont les mêmes : simplement, la chlorophylle est masquée par des pigments d’autres couleurs.

Chez les bactéries (notamment les abondantes cyanobactéries, mais aussi les bactéries vertes et les bactéries pourpres), qui sont dépourvues d’organites, la photosynthèse se fait dans le cytoplasme, sur des invaginations de la membrane cellulaire ou des corpuscules (appelés chlorosomes), qui renferment des bactériochlorophylles.
Chez les végétaux et les cyanobactéries, les pigments photosynthétiques sont groupés en photosystèmes : ceux-ci sont composés d’une antenne collectrice des photons (composée de chlorophylle b, de caroténoïdes et de protéines), et d’un centre réactionnel (composé de deux molécules de chlorophylle a), qui a pour fonction de transférer des électrons à une chaîne d’accepteurs d’électrons. Deux photosystèmes distincts ont été identifiés : le photosystème I et le photosystème II (numérotés dans l’ordre de leur découverte).

3. LES PHASES DE LA PHOTOSYNTHÈSE
La photosynthèse se déroule en deux phases distinctes : une phase dépendante de la lumière (phase photochimique ou phase claire), au cours de laquelle l'énergie solaire est captée par la chlorophylle, suivie d'une phase indépendante de la lumière (phase non photochimique ou phase sombre, beaucoup plus longue, où cette énergie est utilisée pour réaliser les synthèses chimiques.

3.1. LA PHASE PHOTOCHIMIQUE

Chez les végétaux, la phase photochimique, connue aussi sous les noms de phase claire ou phase lumineuse (bien que ces expressions soient aujourd’hui abandonnées par les scientifiques) se produit dans des replis de la membrane du chloroplaste, appelés thylakoïdes.
Au cours de cette phase, le photosystème I (PS I), frappé par les photons de la lumière solaire, éjecte des électrons. Ceux-ci sont transférés à une chaîne de transporteurs d’électrons, à l’issue de laquelle ils servent à réduire le NADP+ en NADPH + H+ (→ nicotinamide).

Des photons frappent aussi le photosystème II (PS II), qui libère également des électrons. Ceux-ci sont transférés à une chaîne de transfert d’électrons, puis à un complexe appelé cytochrome. Ce dernier transfert déclenche le passage d’ions H+ dans le stroma du chloroplaste (le milieu aqueux à l’intérieur du chloroplaste) ; ce passage permet à une enzyme, l’ATP-synthétase, de produire des molécules d’ATP (adénosine triphosphate) – l’ATP est la molécule universelle de stockage de l’énergie chez les êtres vivants. Du cytochrome, les électrons passent sur le PS I, pour compenser la perte d’électrons subie à la suite de l’action des photons. Les photons provoquent également la destruction des molécules d’eau (c’est la photolyse de l’eau). Cette réaction (H2O →2H+ + ½ O2 + 2e-) produit des protons qui vont rejoindre le stroma du chloroplaste et des électrons qui vont combler le trou électronique du PS II ; c’est aussi cette réaction qui dégage de l’oxygène (on voit ainsi que l’oxygène est un sous-produit, un déchet du mécanisme de la photosynthèse).

3.2. LA PHASE NON PHOTOCHIMIQUE

La phase non photochimique, autrefois appelée phase sombre ou phase obscure, se déroule dans le stroma du chloroplaste et ne nécessite pas de lumière. Elle correspond à la synthèse de la matière organique ; elle consomme du CO2 et libère de l'eau. L’ATP et le NADPH + H+ produits par la phase photochimique servent à transformer le CO2 en glucides, au cours d’une série de réactions biochimiques appelées cycle de Calvin. Celui-ci débute par la fixation du dioxyde de carbone sur un composé appelé RuDP (ribulose-1,5-diphosphate), grâce à une enzyme, la Rubisco (ribulose-1,5 bisphosphate carboxylase/oxygénase) – acteur majeur de la transformation du CO2 en composés organiques, la Rubisco est la protéine la plus abondante sur Terre.

Le cycle de Calvin produit un triose (un sucre en C3), le glycéraldéhyde-3-phosphate (pour une consommation de 3 CO2, 9 ATP et 6 NAPH + H+). Les trioses se combinent ensuite pour former d’autres sucres, comme le glucose (sucre en C6 ou hexose).
Une quinzaine de secondes après l'absorption du CO2 apparaissent les premiers sucres. À partir de certains hexoses se constituent le saccharose et l'amidon. Outre des glucides, la photosynthèse peut également élaborer des lipides et des protéines par liaison avec une molécule azotée.
Ce cycle existe chez les algues, les plantes des régions tempérées et tous les arbres ; ces végétaux sont dits « plantes en C3 », car le cycle produit un triose.

4. ADAPTATIONS PARTICULIÈRES

4.1. PLANTES EN C4

Chez les graminées tropicales (maïs, mil, sorgho, canne à sucre, plusieurs plantes de la famille des amarantacées), on a découvert en 1966 un autre mécanisme, dit « photosynthèse en C4 ». Il s’agit d’une photosynthèse en deux temps qui se réalise dans deux endroits distincts des feuilles : le premier temps dans les chloroplastes des cellules du mésophylle (la « couche centrale » de la feuille), le second dans ceux de la gaine de cellules qui entoure les vaisseaux conducteurs de sève (gaine périvasculaire). Dans le mésophylle, la fixation du carbone conduit à un composé en C4 (malate ou aspartate). Celui-ci est ensuite transporté jusqu’à la gaine périvasculaire où il est à nouveau décomposé en CO2. Ce CO2 est alors incorporé dans le cycle classique de Calvin, qui aboutit à la production de glucose et d’amidon. Ce mécanisme fonctionne d'autant mieux que la lumière est plus vive et la température voisine de 40-50 °C.
Les plantes en C4 ont un rendement photosynthétique très supérieur à celui des plantes en C3.

La synthèse des glucides se faisant autour des vaisseaux conducteurs, la migration des produits synthétisés est également plus rapide. La photorespiration (fixation d’O2 au lieu de CO2 sur la Rubisco du cycle de Calvin, mécanisme qui diminue le rendement de la photosynthèse) y est très faible. Alors que les végétaux en C3 ont besoin de 150 à 250 g d'eau pour assimiler 1 g de carbone, les végétaux en C4 peuvent se contenter de 50 à 100 g.

4.2. CAM (CRASSULACEAN ACID METABOLISM)

       


Certaines plantes, généralement des plantes grasses et quelques fougères, fixent le CO2 pendant la nuit pour former de l'acide malique. Cet acide est décomposé pendant le jour et libère du CO2 qui, comme précédemment, est introduit dans le cycle des synthèses (cycle de Calvin) en utilisant l'énergie captée par les chloroplastes à la lumière. Les plantes CAM peuvent ainsi supporter la vie dans les milieux arides-chauds : leurs stomates se ferment le jour pour limiter la transpiration et s'ouvrent la nuit pour laisser pénétrer le CO2, les synthèses se faisant le jour suivant.

5. BILAN DE LA PHOTOSYNTHÈSE
L'équation bilan de la photosynthèse des végétaux et des cyanobactéries (dans laquelle l'eau est le donneur d'électrons), est la suivante :

6 CO2 + 12 H2O + lumière → C6H12O6 + 6 O2 + 6 H2O

6. IMPORTANCE DE LA PHOTOSYNTHÈSE
De la lumière reçue par une feuille, 20 % sont réfléchis, 10 % transmis et 70 % effectivement absorbés, sur lesquels 20 % sont dissipés en chaleur, 48 % perdus en fluorescence. Il reste environ 2 % servant à la photosynthèse.

Grâce à la photosynthèse, les végétaux jouent un rôle irremplaçable à la surface de la Terre ; en effet, les plantes vertes sont, avec quelques groupes de bactéries, les seuls êtres vivants capables d'élaborer des substances organiques à partir d'éléments minéraux. On estime que chaque année 20 milliards de tonnes de carbone sont fixés par les végétaux terrestres à partir du gaz carbonique de l'atmosphère et 15 milliards par les algues.
Les végétaux verts sont les producteurs primaires indispensables, premier maillon de la chaîne trophique (→ chaîne alimentaire) ; les végétaux non chlorophylliens et les animaux herbivores et carnivores (y compris l'homme) sont entièrement dépendants de la photosynthèse.
Pour en savoir plus, voir les articles métabolisme, écologie.

 

  DOCUMENT   larousse.fr    LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 ] - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google