SUIVRE LES RÉACTIONS ENTRE LES ATOMES EN LES PHOTOGRAPHIANT AVEC DES LASERS
 

 

 

 

 

 

 

SUIVRE LES RÉACTIONS ENTRE LES ATOMES EN LES PHOTOGRAPHIANT AVEC DES LASERS

"Les progrès de l'optique ont conduit à des avancées significatives dans la connaissance du monde du vivant. Le développement des lasers impulsionnels n'a pas échappé à cette règle. Il a permis de passer de l'ère du biologiste-observateur à l'ère du biologiste-acteur en lui permettant à la fois de synchroniser des réactions biochimiques et de les observer en temps réel, y compris in situ. Ce progrès indéniable a néanmoins eu un coût. En effet, à cette occasion le biologiste est (presque) devenu aveugle, son spectre d'intervention et d'analyse étant brutalement réduit à celui autorisé par la technologie des lasers, c'est à dire à quelques longueurs d'onde bien spécifiques. Depuis peu, nous assistons à la fin de cette époque obscure. Le laser femtoseconde est devenu "" accordable "" des RX à l'infrarouge lointain. Il est aussi devenu exportable des laboratoires spécialisés en physique et technologie des lasers. Dans le même temps, la maîtrise des outils de biologie moléculaire et l'explosion des biotechnologies qui en a résulté, ont autorisé une modification à volonté des propriétés - y compris optiques - du milieu vivant. Une imagerie et une spectroscopie fonctionnelles cellulaire et moléculaire sont ainsi en train de se mettre en place. L'exposé présentera à travers quelques exemples, la nature des enjeux scientifiques et industriels associés à l'approche "" perturbative "" du fonctionnement des structures moléculaires et en particulier dans le domaine de la biologie. "

 

Texte de la 211e conférence de l’Université de tous les savoirs donnée le 29 juillet 2000.
La vie des molécules biologiques en temps réel : Laser et dynamique des protéines
par Jean-Louis Martin
En aval des recherches autour des génomes, alors que le catalogue des possibles géniques et protéiques est en voie d’achèvement, nous sommes entrés dans l’ère fonctionnelle qui doit nous conduire à comprendre comment toutes les molécules répertoriées interviennent pour « faire la vie ». Le profit qui sera fait de cette masse d’informations, dépend de notre capacité à intégrer ces données moléculaires dans des schémas fonctionnels sous-tendant la constitution et l’activité des cellules voire des organes et des organismes.
Cette intégration va dépendre de domaines de recherche très variés, différents de ceux qui traditionnellement ont fait progresser la biologie des systèmes intégrés.
Au niveau cellulaire, l’approche fonctionnelle est déjà très avancée, en partie parce qu’elle s’appuie sur des compétences, des technologies et des concepts, largement communs à ceux développés par la génétique et la biologie moléculaire. Elle est toutefois, à ce jour, encore loin d’aboutir à une mise en cohérence du rôle fonctionnel des différents acteurs dont elle identifie le rôle au sein de la cellule : récepteurs, canaux ioniques, messagers, second messagers… Les progrès dans ce domaine vont être intimement liés à notre capacité à développer des outils autorisant à la fois un suivi in situ des différents acteurs, et une manipulation à l’échelle de la molécule.
Les développements technologiques spectaculaires dans le domaine des lasers impulsionnels a déjà permis le développement d’une nouvelle microscopie en trois dimensions : la microscopie confocale non linéaire. Associée à la construction de protéines chimères fluorescentes, cet outil a déjà permis de progresser significativement dans la localisation d’une cible protéique ou dans l’identification de voies de trafic intracellulaire.
Cependant, le décryptage in situ et in vivo du rôle fonctionnel des différents acteurs, en particulier protéique, ou plus encore, la compréhension des mécanismes sous-jacents, constituent des défis que peu d’équipes dans le monde ont relevés à ce jour. Il s’agit ici d’associer des techniques permettant de donner un sens à une cascade d’évènements qui s’échelonnent sur des échelles de temps allant de la centaine de femtoseconde1 à plusieurs milliers de secondes.
Le fonctionnement des protéines en temps réel
Le fonctionnement des macromolécules biologiques – protéines, acides nucléiques – est intimement lié à leur capacité à modifier leurs configurations spatiales lors de leur interaction avec des entités spécifiques de l’environnement, y compris avec d’autres macromolécules. Le passage d’une configuration à une autre requiert en général de faibles variations d’énergie, ce qui autorise une grande sensibilité aux variations des paramètres de l’environnement, associée à une dynamique interne des macromolécules biologiques s’exprimant sur un vaste domaine temporel.
Dans une première approche, on peut considérer qu’une vitesse de réaction biologique est la résultante du « produit » de deux termes: une dynamique intrinsèque des atomes et une probabilité de transition électronique. C’est en général ce dernier facteur de probabilité qui limite la vitesse d’une réaction. Une réaction biochimique est généralement lente non pas comme conséquence d’évènements intrinsèquement lents, mais comme le résultat d’une faible probabilité avec laquelle certains de ces évènements moléculaires peuvent se produire.
Plus précisément, une réaction biologique qui implique, par exemple, une rupture ou une formation de liaison, est tributaire de deux classes d’évènement : d’une part un déplacement relatif des noyaux des atomes et d’autre part une redistribution d’électrons parmi différentes orbitales. Ces deux catégories d’évènements s’expriment sur des échelles de temps qui leur sont propres et qui dépendent de la structure électronique et des masses atomiques des éléments constituant la molécule. Ainsi la dynamique des atomes autour de leur position d’équilibre est, en première approximation, celle d’oscillateurs harmoniques faits de masses ponctuelles couplées par des forces de rappels. Dans le cas des macromolécules biologiques, les milliers d’atomes que comporte le système évoluent sur une hyper-surface d’énergie dont la dimension est déterminée par le nombre de degrés de liberté de l’ensemble du complexe.
Le « travail » que doit effectuer une protéine est de nature très variée : catalyse dans le cas des enzymes, transduction de signal dans le cas de récepteurs, transfert de charges de site à site, transport de substances … mais il existe une caractéristique commune dans le fonctionnement de ces protéines : la sélection de chemins réactionnels spécifiques au sein de cette surface de potentiel. À l’évidence le système biologique n’explore pas l’ensemble de l’espace conformationnel : le coût entropique serait fatal à la réaction… et à l’organisme qui l’héberge.
L’identification de ce chemin réactionnel au sein de l’édifice constitue l’objectif essentiel des expériences de femto-biologie.
L’approche expérimentale : produire un séisme moléculaire et le suivre par stroboscopie laser femtoseconde
Dans une protéine, qui comporte des milliers d’atomes, l’identification des mouvements participant à la réaction moléculaire n’est pas chose aisée.
Comment réussir à caractériser la dynamique conduisant à une conformation intermédiaire qui est elle-même à la fois très fugace et peu probable ?
La cinétique de ces mouvements est directement déterminée par les modes de vibration de la protéine. On peut donc s’attendre à des mouvements dans les domaines femtoseconde et picoseconde2. Pour espérer avoir quelques succès dans cette investigation, il est par ailleurs impératif d’utiliser un système moléculaire accessible à la fois à l’expérimentation et à la simulation, la signature spectrale de la dynamique des protéines n’apportant que des informations indirectes. De plus, la réaction étudiée doit pouvoir être induite de manière « synchrone » pour un ensemble de molécules. Il est donc nécessaire de perturber de manière physiologique un ensemble moléculaire dans une échelle de temps plus courte que celle des mouvements internes les plus rapides, donc avec une impulsion femtoseconde.
Cette approche « percussionnelle » est commune à la plupart des domaines de recherche utilisant des impulsions femtosecondes. La biologie ne se distingue sur ce point, que dans l’adaptation de la perturbation optique pour en faire une perturbation physiologique. Le problème est naturellement résolu dans le cas des photorécepteurs pour lesquels le photon est « l’entrée » naturelle du système. Ceci explique les nombreux travaux en photosynthèse : transfert d’électron dans les centres réactionnels bactériens, transfert d’énergie au sein d’antennes collectrices de lumière dans les bactéries, mais aussi les études transferts de charges au sein d’enzyme de réparation de l’ADN ou responsable de la synchronisation des rythmes biologiques avec la lumière solaire, ainsi que les travaux sur les premières étapes de la vision dans la rhodopsine.
Il existe par ailleurs des situations favorables où la protéine comporte un cofacteur optiquement actif qui peut servir de déclencheur interne d’une réaction: c’est la cas des hémoprotéines comme l’hémoglobine que l’on trouve dans les globules rouges ou les enzymes impliquées dans la respiration des cellules comme la cytochrome oxydase. Dans ces hémoprotéines il est possible de rompre la liaison du ligand (oxygène, NO ou CO) avec son site d’ancrage dans la moléculen par une impulsion lumineuse femtoseconde.On se rapproche ici des conditions physiologiques, la transition optique permettant de placer le site actif de l’hémoprotéine dans un état instable entrainant la rupture de la liaison site actif-ligand en moins de 50 femtosecondes. Cette méthode aboutit à la synchronisation de l’ensemble des réactions d’un grand nombre de molécules. Il est alors possible de suivre leur comportement pendant la réaction et d’identifier les changements de conformation lors du passage des cols énergétiques. On peut faire une analogie sportive : en suivant l’évolution de la vitesse d’un « peloton » de coureurs cyclistes lors d’une étape du tour de France, on peut retracer le profil de cols et de vallées de l’étape, à condition que les coureurs partent au même instant. Pour un « peloton » de molécules, c’est le Laser femtoseconde qui joue le rôle du « starter » de l’étape.
Le paysage moléculaire dans les premiers instants d’une réaction : la propagation d’un séisme moléculaire
Dans les premiers instants qui suivent la perturbation (dissociation de l’oxygène de l’hème, par exemple), les premiers évènements moléculaires resteront localisés à l’environnement proche du site actif. À une discrimination temporelle dans le domaine femtoseconde, correspond donc une discrimination spatiale au sein de la molécule. Il devient ainsi possible de suivre la propagation du changement de conformation au sein de la molécule. Pour donner un ordre de grandeur, celui-ci s’effectue en effet en première approximation à la vitesse d’une onde acoustique ( environ 1200m/s) qui, traduite à l’échelle de la molécule, est 1200x10-12 soit 12 Å par picoseconde. En 100 fs la perturbation initiale est donc essentiellement localisée au site actif. Nous sommes au tout début du séisme moléculaire. En augmentant progressivement le retard de l’impulsion analyse par rapport à l’impulsion dissociation, il est possible de visualiser les chemins de changement conformationnel de la protéine et d’identifier les mouvements associés au fonctionnement de la macromolécule.
Ce simple calcul montre que la spectroscopie femtoseconde se distingue de manière fondamentale des techniques à résolution temporelle plus faible: il ne s’agit plus d’ obtenir des constantes de réaction avec une meilleur précision, mais l’intérêt majeure des « outils femtosecondes » provient du fait que pour la première fois il est possible de décomposer les évènements à l’origine de ces réactions ou induits par la réaction.
Cette discrimination spatiale associée à une résolution temporelle femtoseconde a un autre intérêt qui est de « simplifier » un système complexe sans avoir à utiliser une approche réductionniste (par coupure chimique) qui peut conduire le biophysicien moléculaire à étudier un sous-ensemble d’un complexe moléculaire dont les propriétés n’auront que peu de choses à voir avec la fonction biologique de l’ensemble.
La compréhension d’un automate moléculaire
Dès le début des années 80, l’approche percussionnelle dans le régime femtoseconde a été développée dans le domaine de la dynamique fonctionnelle des hémoprotéines et en particulier pour l’étude de l’hémoglobine. Cette protéine qui comporte quatre sites de fixation de l’oxygène, les hèmes, est capable d’auto-réguler sa réactivité à l’oxygène : c’est une régulation dite « allostérique ». La régulation allostérique de l’hémoglobine se traduit par le fait que la dissociation ou la liaison d’une molécule d’oxygène entraine une modification d’un facteur 300 de l’affinité des autres hèmes pour l’oxygène. La structure de l’hémoglobine est connue à une résolution atomique à la fois dans l’état ligandé (ou oxyhémoglobine) et dans l’état déligandé (désoxyhémoglobine). De ces travaux on sait que l’hémoglobine possède deux structures stables qui lui confèrent soit une haute affinité (état R) soit une basse affinité (état T) pour l’oxygène. Il s’agissait de déterminer le mécanisme, qui partant de la rupture d’une simple liaison chimique entre oxygène et fer induit un changement conformationel de l’ensemble du tétramère conduisant à distance à une modulation importante de l’affinité des autres sites de liaison.
Le débat de l’époque concernant la transition allostérique dans l’hémoglobine n’avait pas encore décidé du choix entre cause et conséquence au sein de l’édifice moléculaire. Nous connaissions les deux structures à l’équilibre avec une résolution atomique, grâce aux travaux de Max Perutz. Il était connu, même si cela n’était pas encore unanimement admis, que la dissociation de l’oxygène de l’hème entrainait « à terme » un changement conformationnel de ce dernier par déplacement de l’atome de fer en dehors du plan des pyrroles. Deux modèles s’opposaient: ce déplacement était-il la cause ou la conséquence du changement conformationnel impliquant la structure tertiaire et quaternaire de l’hémoglobine ? Dans la première hypothèse, cet évènement était crucial puisque le déclencheur de la communication hème-hème au sein de l’hémoglobine, c’est à dire le processus qui traduisait une perturbation très locale ( rupture d’une liaison chimique en un « basculement » de la structure globale vers un autre état). En discriminant temporellement les évènements consécutifs à la rupture de la liaison ligand-fer, il a été montré que le premier évènement est le déplacement du fer en dehors du plan de l’hème en 300 femtosecondes. Cet événement ultra-rapide constitue une étape cruciale dans la réaction de l’hémoglobine avec l’oxygène. Il contribue à donner à l’hémoglobine les propriétés d’un transporteur d’oxygène en autorisant une communication d’un site de fixation de l’oxygène à un autre. Un événement excessivement fugace et à l’échelle nanoscopique a donc retentissement au niveau des grandes régulations physiologiques : ici l’oxygénation des tissus.
À ce jour, l’essentiel du scénario consécutif à cet événement initial, qui conduit à la communication hème-hème, reste à découvrir. Pour cela il est nécessaire de faire appel à des outils permettant de suivre la propagation de ce « séisme initial » au sein de l’édifice et d’identifier ainsi les mouvements atomiques contribuant au chemin réactionnel. Des nouveaux outils restent à découvrir, certains sont en cours de développement : diffraction RX femtoseconde, spectroscopie infra-rouge dans le domaine THz sont probablement les outils adaptés.
La catalyse enzymatique : la caractérisation des états de transition
Dans son commentaire sur le prix Nobel en « femtochimie », l’éditeur de Nature3 écrit dans le dernier paragraphe : « It seems inevitable that ultrafast change in biological systems will receivre increasing attention ».
Sur quoi se fonde une telle certitude ?
Pour une part, sur une réflexion qui date d’un demi-siècle : celle de Linus Pauling qui était essentiellement de nature théorique. Pauling a proposé que le rôle des enzymes est d’augmenter la probabilité d’obtenir un état conformationnel à haute énergie très fugace ou, en d’autres termes, de stabiliser l’état de transition c’est-à-dire l’état conformationnel conduisant à la catalyse. En d’autres termes, il s’agit d’optimiser l’allure du « peloton » au sommet du Tourmalet. Dans les enzymes comme pour les coureurs, c’est à cet endroit que l’avenir de la réaction se joue, et c’est ici que les enzymes interviennent !
Le préalable à la compréhension du fonctionnement des enzymes est donc la caractérisation des états de transition. Une démonstration expérimentale indirecte a été la production d’anticorps catalytiques- ou abzymes- par Lerner et coll. dans le début des années 80. En effet, suivant le raisonnement de Pauling, les anti-corps « reconnaissent » leur cible épitopique dans leur état fondamental ( c’est à dire au minimum de la surface de potentiel, dans la vallée énergétique) alors que les enzymes reconnaissent leur cible, le substrat, dans son état de transition, au col énergétique. Les anticorps deviendont catalytiques si, produits en réponse à la présence d’une molécule mimant l’état de transition d’un substrat, ils sont mis en présence de ce dernier... : ça marche... plus ou moins bien, mais ceci est une autre histoire.
La caractérisation de cet état de transition est donc un préalable à la compréhension des mécanismes de catalyse mais aussi à la conception d’effecteurs modifiant la réactivité. Dans une protéine, qui comporte des milliers d’atomes, l’identification des mouvements participant à la réaction moléculaire n’est pas chose aisée, l’interprétation des spectres ne pouvant plus être directe, comme dans le cas des molécules diatomiques. La cinétique de ces mouvements est directement déterminée par les modes de vibration de la protéine. On peut donc, ici aussi, s’attendre à des mouvements dans le domaine femtoseconde.
Il existe une classe d’enzymes pour laquelle la structure de l’état de transition est connue grace à des approches théoriques : ce sont les protéases dont on sait qu’elles favorisent la configuration tétrahédrique du carbone de la liaison peptidique.Cette connaissance de l’état de transition a autorisé une approche rationnelle dans la conception de molécules « candidat-médicament »: les inhibiteurs de protéase. Il n’est donc pas surprenant qu’à ce jour, les seuls médicaments sur le marché -et non des moindres- issus d’une démarche scientifique véritablement rationnelle soient des inhibiteurs de protéases ou de peptidases : inhibiteurs de l’enzyme de conversion (IEC), inhibiteurs de protéase du virus HIV, base de « la tri-thérapie ».
En donnant l’espoir de photographier les états de transition, la femto-biologie ouvre la perspective d’une démarche rationnelle dans la conception d’inhibiteurs spécifiques. Avant qu’une telle possibilité ne soit offerte, il reste néanmoins à surmonter de sérieuses difficultés: le développement d’une méthode plus directe de visulisation des conformations, en particulier par diffraction RX femtoseconde, mais aussi la mise au point de méthodes de synchronisation à l’échelle femtoseconde de réactions enzymatiques au sein d’un cristal.
Filmer les molécules à l’échelle femtoseconde a permis de mettre en évidence un comportement inattendu d’enzymes de la respiration : l’utilisation de mouvements de balancier des atomes au profit d’une grande efficacité de réaction
La vie de tous les organismes aérobies – dont nous sommes – dépendent d’une classe d’enzyme : les oxydases et plus particulièrement pour les eucaryotes, de cytochromes oxydases. Cette enzyme est la seule capable de transférer des électrons à l’oxygène en s’auto-oxydant de manière réversible. Elle est responsable de la consommation de 90 % de l’oxygène de la biosphère.
Un dysfonctionnement de cette enzyme a un effet délétère sur la cellule, en particulier par production du très toxique radical hydroxyle °OH. Au delà d’un certain seuil de production, les systèmes de détoxification sont débordés. Le stress oxydatif qui en résulte peut se traduire par diverses pathologies. On retrouve une telle situation en période post-ischémique dans l’infarctus du myocarde, mais aussi dans des maladies neurodégénératives ou lors du vieillissement.
Cette enzyme catalyse la réduction de l’oxygène en eau à partir d’équivalents réducteur cédés par le cytochrome c soluble. Cette réduction à quatre électrons est couplée à la translocation de quatre protons à travers la membrane mitochondriale. L’oxygène et ses intermédiaires restent liés à un hème (l’hème a3) dans un site très spécifique. Ce site comprend, outre l’heme a3, un atome de cuivre, le CuB. Cet atome joue un rôle important dans le contrôle de l’accès des ligands vers ce site ou vers le milieu. Des ligands diatomiques (O2, NO, CO) peuvent établir des liaisons soit avec le Fer de l’hème a3, soit avec le CuB, mais le site actif parait trop encombré pour accommoder deux ligands.
Des études récentes en dynamique femtoseconde ont permis d’élucider le mécanisme de transfert de ligand (monoxyde de carbone (CO)), de l’hème a3 vers le CuB. Le CO est une molécule de transduction du signal produite en faible quantité par l’organisme, qui inhibe la cytochrome c oxidase par formation d’un complexe heme a3-CO stable. En suivant cette réaction par spectroscopie femtoseconde, il a été possible de mettre en évidence un mécanisme très efficace, et en toute sécurité, de transfert d’une molécule dangereuse pour la vie cellulaire. L’enzyme libère la molécule de CO d’un premier site en lui donnant une impulsion qui oriente sa trajectoire vers le site suivant en la protégeant de collisions avec l’environnement.
Dans ce dernier exemple l’enzyme a atteint un degré de sophistication supplémentaire : outre le franchissement du col énergétique de façon optimale, l’enzyme évite la diffusion d’une molécule dangereuse pour la survie cellulaire, tout en l’utilisant comme messager très efficace !
Vers le décloisonnement des disciplines
Le cinema moléculaire n’en est qu’à ses débuts. Il est essentiellement muet. La filmothèque est à peine embryonnaire, le nombre de plan-séquences ne permet pas encore de révéler un véritable scénario. L’essentiel est donc à venir.
Reconstruire le film des évènements conduisant à la vie cellulaire, les intégrés dans des schémas fonctionnels, va donc constituer l’objectif des prochaines décennies.
Cette intégration va dépendre de domaines de recherche très variés, différents de ceux qui traditionnellement ont fait progresser la biologie de la cellule ou des organes. Le transfert des outils de la physique, et au-delà, l’invention de nouveaux outils, y compris moléculaires, l’émergence de nouveaux concepts, va nécessiter le développement de synergies entre acteurs évoluant jusqu’ici dans des sphères disjointes : biologistes cellulaire et moléculaire, physiciens, chimistes, bioinformaticiens… Dans ce cadre il sera utile de créer les conditions permettant de rassembler en un seul site, l’ensemble des compétences.
1 Femtoseconde : le milliardième de millionième de seconde.
2 Picoseconde : millioniène de millionième de seconde = 1000 femtosecondes.
3 Vol 401,p. 626,14 octobre 1999.

 

VIDEO     canal U       LIEN

 
 
 
  CÉSIUM 137
 

 

 

 

 

 

 

césium 137


Isotope radioactif du césium, noté 137Cs, dont le nombre de masse est égal à 137.
C’est un radio-isotope très connu, car il constitue la principale source de radioactivité des déchets des réacteurs nucléaires avec le strontium 90 et différents isotopes du plutonium (→ nucléaire).

1. Origine du césium 137


Le césium 137 n’existe pas à l’état naturel. Il est principalement produit lors de la fission de l’uranium dans les réacteurs nucléaires. Chaque réacteur à eau pressurisée conventionnel (REP) produit environ 24 kg de césium 137 par an.


De grandes quantités de césium 137 ont également été produites lors des nombreux essais nucléaires atmosphériques réalisés jusque dans les années 1990. Ce césium 137 s’est depuis déposé sur l’ensemble de la planète.
Par ailleurs, le césium 137 est également l’une des principales sources de contamination radioactive lors des accidents de réacteurs nucléaires, dont les plus connus sont ceux des centrales de Three Miles Island (États-Unis) en 1979, de Tchernobyl (Ukraine) en 1986 et de Fukushima (Japon) en 2011.

2. Propriétés du césium 137


Comme tous les isotopes du césium (39 radio-isotopes au total), le noyau du césium 137 comporte 55 protons, mais il se distingue par son nombre de neutrons égal à 82. Son spin est de 7/2 et sa masse atomique est d’environ 136,907.
Le césium 137 se désintègre en baryum 137 (nucléide stable) selon le mode de désintégration β–, en émettant des rayons gamma de haute énergie (énergie de désintégration égale à 1,176 MeV) (→ élément, matière).
C’est un isotope radioactif dont la durée de vie est considérée comme moyenne. Sa période radioactive, ou temps de demi-vie (c’est-à-dire le temps au bout duquel la moitié des noyaux radioactifs, initialement présents, se sont désintégrés) est de 30,07 années.
3. Toxicité du césium 137
Du fait de ses émissions de rayonnement gamma, le césium 137 est extrêmement dangereux pour tous les êtres vivants (végétaux, animaux, hommes). De plus, sa toxicité est accrue par sa similarité chimique avec le potassium qu’il tend à remplacer dans les processus d’assimilation par les végétaux ou par ingestion dans l’organisme.


3.1. Effets du césium 137 sur la santé


On distingue généralement l’exposition externe et l’exposition interne au césium 137. Les contaminations cutanées sont difficiles à éliminer (la période au niveau de la peau étant d’environ quatre jours) et une dose locale élevée de césium 137 provoque une brûlure cutanée qui doit être traitée comme une brûlure classique (voir irradiation).

L’exposition interne est beaucoup plus dangereuse. En effet, s’il est inhalé ou ingéré, le césium 137 est assimilé comme son homologue et compétiteur naturel, le potassium, dans l’ensemble de l’organisme en se concentrant préférentiellement dans les muscles (avec une charge plus importante chez l’enfant que chez l’adulte). Sa période biologique (c’est-à-dire le temps au bout duquel la moitié du césium  37 qui a pénétré dans l’organisme est rejetée à l’extérieur dans les urines, les selles et la sueur) est de 100 jours environ.
L’ingestion de fortes doses de césium 137 a des effets dévastateurs : insuffisance médullaire, altération du système immunitaire et de la fonction de reproduction, affections rénales… Par ailleurs, à doses plus faibles et à plus long terme, le césium 137 entraîne une augmentation des cancers de la thyroïde, des malformations congénitales et fœtales, ainsi que des troubles neurologiques.
En termes de prise en charge thérapeutique des patients contaminés par le césium 137, le bleu de Prusse (ferrocyanure de fer) est le seul traitement efficace pour évacuer le césium 137 après ingestion.
3.2. Effets du césium 137 sur l’environnement


Dans l’environnement terrestre, le césium 137 reste concentré dans les couches supérieures du sol où il est fixé par les minéraux. Il est intercepté par le feuillage de la végétation et se retrouve ainsi dans la litière des forêts. Les champignons qui se développent en surface et à quelques centimètres sous la surface du sol, piègent le césium 137 (comme ils piègent, par ailleurs, les pesticides).



L’isotope radioactif peut ainsi se concentrer dans la chaîne alimentaire, notamment dans la chair du gibier (sangliers, etc.) ; mais il contamine tout aussi bien la chair des poissons du fait de sa présence dans des eaux courantes et les océans.
4. Utilisations industrielles et médicales
Dans les secteurs industriel et médical, le césium 137 est utilisé pour ses rayons gamma. Il est produit artificiellement par bombardement neutronique de césium stable (césium 133), puis est placé à l’intérieur d’une capsule scellée, où il est généralement mélangé avec une résine. L’activité de ces sources scellées de césium 137 peut varier de façon considérable (de 106 Bq à 1015 Bq).
La majeure partie de ces sources sont utilisées dans l’industrie dans les appareils de gammagraphie pour le contrôle non destructif de pièces métalliques, de soudures ou d’ouvrages d’art, ainsi que dans les irradiateurs industriels pour la stérilisation des aliments.
En médecine, on utilise des sources de césium 137 d’activités assez faibles (environ 109 Bq) dans le traitement de tumeurs cancéreuses, en plaçant la source directement au contact de la tumeur à traiter (brachythérapie, voir radiothérapie). Des sources d’activités plus élevées (de l’ordre de 1014 Bq ) sont utilisées pour l’irradiation de produits sanguins, permettant ainsi d’inhiber la division lymphocytaire afin d’éviter les risques de maladie post-transfusionnelle chez les patients immunodéprimés.

 

DOCUMENT   larousse.fr    LIEN

 

 
 
 
  LE MONDE QUANTIQUE AU TRAVAIL : L'OPTOÉLECTRONIQUE
 

 

 

 

 

 

 

LE MONDE QUANTIQUE AU TRAVAIL : L'OPTOÉLECTRONIQUE

L'optoélectronique est une discipline scientifique et technologique qui a trait la réalisation et l'étude de composants mettant en jeu l'interaction entre la lumière et les électrons dans la matière. Ces composants, qui permettent de transformer la lumière en courant électrique et réciproquement, sont des instruments privilégiés pour comprendre le nature de la lumière et des électrons. Il est donc peu étonnant que ce soit le tout premier composant opto-électronique (la cellule photoélectrique) qui soit à l'origine de la découverte d'Albert Einstein de la dualité onde-corpuscule. Dans cette Conférence, nous décrirons comment ce concept fondateur de la Physique Quantique a permis de comprendre les propriétés électroniques et optiques de la matière. Nous décrirons comment ces propriétés quantiques sont mises en oeuvre dans les quelques briques de base conceptuelles et technologiques à partir desquelles tous les composants optoélectroniques peuvent être élaborés et compris. Nous décrirons enfin quelques exemples de ces composants optoélectroniques qui ont changé profondément notre vie quotidienne : - les détecteurs quantiques (caméscopes, cellules solaires, infrarouge…) - les diodes électroluminescentes (affichage, éclairage, zapettes, …) - les diodes laser (réseaux de télécommunication, lecteurs de CD-DVD, internet, …) Nous explorerons finalement quelques nouvelles frontières de cette discipline, qui est un des domaines les plus actifs et des plus dynamiques de la Physique à l'heure actuelle.

Transcription* de la 590e conférence de l'Université de tous les savoirs prononcée le 12 juillet 2005
Le monde quantique au quotidien : l'optoélectronique
Par Emmanuel Rosencher

Cet exposé propose de vous montrer comment la mécanique quantique, domaine abstrait, sophistiqué, voire ésotérique pour certains, est à la base de révolutions technologiques qui ont transformé notre quotidien. Nous montrerons tout d'abord comment la physique quantique est née de l'étude d'un composant optoélectronique (définissons l'optoélectronique comme étant l'étude de l'interaction qui a lieu entre la lumière et les électrons dans les solides). Nous montrerons ensuite comment la mécanique quantique a rendu la monnaie de sa pièce à l'optoélectronique en lui fournissant des briques de bases conceptuelles extrêmement puissantes, à partir desquelles un certains nombres de composants comme les détecteurs quantiques ou les émetteurs de lumière ont été réalisés. Nous présenterons enfin les défis actuels que l'optoélectronique tente de relever.

Là où tout commence : l'effet photoélectrique
Tout commence en 1887. Rudolph Hertz, célèbre pour la découverte des ondes Hertziennes, va découvrir l'effet photoélectrique, aidé de son assistant Philipp von Lenard. Cet effet va révolutionner notre compréhension de la lumière comme de la matière, bref, notre vision du monde. L'expérience qu'ils ont réalisée était pourtant on ne peut plus simple : deux plaques métalliques sont placées dans le vide. On applique à ces plaques une différence de potentiel. Le courant qui circule dans le système est mesuré. Comme les plaques métalliques sont placées dans le vide, les électrons n'ont pas de support pour passer d'une électrode à l'autre, et donc aucun courant ne peut circuler dans le système. Hertz décide alors d'illuminer une des plaques avec de la lumière rouge, il s'aperçoit que rien ne change. Par le hasard de l'expérience, il éclaire alors la plaque avec de la lumière bleue, et s'aperçoit cette fois qu'un courant commence à circuler. Il est important de noter que, même avec une grande intensité de lumière rouge, aucun courant ne circule, alors qu'une faible lumière bleue fait circuler le courant. Les deux savants concluent leur expérience par la phrase suivante, qui deviendra une des pierres fondatrices de la physique quantique : « il semble y avoir un rapport entre l'énergie des électrons émis et la fréquence de la lumière excitatrice. »
A la même époque, un autre grand savant, Max Planck, travaille sur un sujet totalement différent, à savoir le « spectre du corps noir » ( voir Figure 1): en d'autres termes, il étudie la lumière émise par des corps chauffés. Le fer, par exemple, une fois chauffé devient rouge. A plus haute température, il vire au jaune, puis au blanc. Max Planck étudie donc le fait que tous les corps chauffés vont avoir un comportement commun : à une température donnée, ils rayonneront principalement une certaine longueur d'onde. Par exemple, notre corps à 37°C émet des ondes à 10 mm (lumière infrarouge non visible). En revanche, à 5000°C (température correspondant à la surface du soleil), le maximum se déplace, le corps émet autour de 500 nm (jaune). Cette correspondance entre la température du corps noir et la nature de la lumière émise par ce corps va littéralement rendre fou toute une génération de physiciens qui n'arrivent pas à expliquer ce phénomène. Max Planck, au début du XXème siècle, déclarera à la société allemande de physique qu'il peut rendre compte de ce comportement. Pour cela, il doit supposer que la lumière arrive en paquets d'énergie et que chaque paquet d'énergie est proportionnel à la fréquence de la lumière, c'est-à-dire que l'énergie de chaque grain de lumière est le produit de la fréquence de cette onde par une constante, ridiculement petite (environ 6.10-34 J.s). S'il est persuadé d'avoir fait une grande découverte, Max Planck n'a pour autant pas la moindre idée de ce que sont ces « quanta » d'énergie qu'il a introduits dans son calcul.
figure1
Spectre du corps noir (le fer chauffé de la photo émet des longueurs d'onde réparties sur la courbe bleue, la courbe rouge est émise par un humain qui n'a pas de fièvre)
Pendant ce temps, à la société Anglaise de physique, Lord Kelvin fait son discours inaugural, où il déclare que toute la physique est constituée, la récente théorie ondulatoire de Maxwell rendant très bien compte du comportement de la lumière. Il ne reste plus que quelques phénomènes incompris, d'un intérêt secondaire. Parmi ces phénomènes incompris figurent évidemment le spectre du corps noir, et l'effet se produisant dans la cellule photoélectrique.
Albert Einstein va réaliser le tour de force de montrer que ces deux phénomènes ont une même origine, origine qu'il baptisera la dualité onde-corpuscule. L'hypothèse révolutionnaire d'Einstein est de dire que la lumière, considérée jusqu'alors comme une onde, est également une particule. A la fois onde et particule, la lumière véhicule ainsi une quantité d'énergie bien précise.
Le raisonnement d'Einstein se comprend bien sur un diagramme d'énergie, où est représentée l'énergie des électrons en fonction de leur position ( voir Figure 2). Pour être arraché du métal, un électron doit recevoir l'énergie qui lui permet d'échapper à l'attraction du métal. Cette énergie est appelée potentiel d'ionisation. Les électrons sont donc piégés dans le métal, et il leur faut franchir ce potentiel d'ionisation pour le quitter. L'hypothèse d'Einstein consiste à dire que la lumière est constituée de particules et que chaque particule a une énergie valant h.f, où h est la constante établie par Max Planck, et f la fréquence de la lumière. Si cette énergie h.f est inférieure au potentiel d'ionisation (comme c'est le cas pour la lumière rouge), aussi puissant que soit le faisceau de lumière, nous n'arracherons pas le moindre électron au métal. En revanche, si la lumière est bleue, la longueur d'onde est plus courte, ce qui correspond à une fréquence f plus grande, donc une énergie plus grande, les électrons vont alors acquérir l'énergie suffisante pour quitter le métal et aller dans le vide. Cette théorie permet donc d'expliquer le phénomène jusqu'alors incompris observé par Hertz et Leenard.
figure2
Diagramme d'énergie d'Einstein
Einstein ne se contente pas de cette explication, il propose une expérience permettant de vérifier son hypothèse. Si on mesure l'excès d'énergie des photons (représenté DE sur la Figure 2), c'est-à-dire si on mesure l'énergie des électrons une fois qu'ils ont été arrachés par la lumière, on doit pouvoir en déduire la valeur de la constante de Planck h.
La théorie d'Einstein est accueillie à l'époque avec fort peu d'enthousiasme. La physique semblait jusqu'alors bien comprise, la lumière était une onde, et on rendait compte de l'écrasante majorité des phénomènes observés. Et Einstein vient tout bouleverser ! De nombreux scientifiques vont donc tenter de montrer que sa théorie est fausse. Notamment Millikan, qui va passer 12 années de sa vie à tester la prédiction d'Einstein. Millikan reconnaîtra finalement son erreur : son expérience montrera bien que l'énergie en excès dans les électrons est proportionnelle à la fréquence de la lumière excitatrice, et le coefficient de proportionnalité est bien la constante de Planck h.
Einstein venait d'unifier deux phénomènes qu'a priori rien n'apparentait : la lumière émise par un corps chauffé, et l'excès d'énergie d'un électron émis dans le vide. Ce lien existe, et c'est la physique quantique.
On peut donc relier la longueur d'onde de la lumière à son énergie ( voir Figure 3). Ainsi, le soleil qui rayonne principalement dans le jaune, c'est-à-dire à des longueurs d'onde d'environ 500 nm émet des photons de 2 eV (électron-volt). Le corps humain à 37°C rayonne une onde à 10 mm, ce qui correspond à des photons d'énergie 0,1eV. Rappelons qu'un électron-volt correspond à l'énergie d'un électron dans un potentiel électrique de 1V.
figure3
Correspondance entre longueur d'onde de la lumière et énergie du photon
Les briques de base
Comme nous l'avons mentionné en introduction, la physique entre alors dans un cercle vertueux : la technologie (par la cellule photoélectrique) fournit à la physique un nouveau concept fondamental, la physique quantique va en retour développer des outils conceptuels extrêmement puissants qui vont permettre le développement des composants optoélectroniques que nous allons étudier.
Les Semi-conducteurs
Avant d'entrer dans ce cercle vertueux, un concept manque encore à la physique quantique. Il va être proposé par le français Louis de Broglie en 1925. Ce dernier fait le raisonnement suivant : Einstein vient de montrer que la lumière, qui est une onde, se comporte comme une particule. Que donnerait le raisonnement inverse? Autrement dit, pourquoi la matière (les atomes, les électrons, tout objet ayant une masse) ne se comporterait-elle pas également comme une onde ? De Broglie va montrer qu'on peut associer à l'énergie d'une particule matérielle une longueur d'onde. Il montre notamment que, plus la particule a une énergie élevée, plus sa longueur d'onde est faible. La correspondance entre énergie et longueur d'onde pour la matière différera cependant de celle pour les photons, car les photons n'ont pas de masse.
Partant de cette hypothèse, Wigner, Seitz et Bloch se demandent ce que devient cette longueur d'onde lorsque l'électron est dans la matière, où il est soumis à un potentiel d'environ 5V. Leur calcul leur montre que sa longueur d'onde est alors d'environ 5 angströms (1 angström valant 10-10 mètres)... ce qui correspond à peu près à la distance entre atomes dans la matière.
figure4
Comportement d'une onde électronique dans la matière et naissance de la structure de bandes
La physique quantique va alors donner une compréhension nouvelle et profonde du comportement des électrons dans la matière. Rappelons que la matière peut souvent être représentée par un cristal, c'est-à-dire un arrangement périodique d'atomes, distant de quelques angströms. Imaginons qu'une onde électronique (c'est-à-dire un électron) essaie de traverser le cristal. Si la longueur d'onde vaut 20 angströms, elle est très grande par rapport au maillage du cristal, et elle ne va donc pas interagir avec le cristal. Cette longueur d'onde va donc pouvoir circuler, on dira qu'elle est permise, et par conséquent l'énergie qui lui correspond est elle aussi permise (onde rouge sur la Figure 4). Il y aura un très grand nombre de longueur d'ondes permises, auxquelles correspondront des bandes d'énergies permises. En revanche, si la longueur d'onde de l'électron est de l'ordre de 5 angströms (onde bleue sur la Figure 4), c'est-à-dire de la distance être atomes, l'électron va alors résonner avec la structure du cristal, et l'onde ne va pas pouvoir pénétrer dans la matière. L'onde électronique est alors interdite dans la matière, et l'énergie qui lui correspond est également interdite dans la matière. Ainsi on voit apparaître, pour décrire les électrons dans la matière, une description en termes de bandes permises et de bandes interdites. Nous appellerons la bande permise de plus basse énergie (sur la figure 5) la bande de valence, et la bande permise au-dessus d'elle la bande de conduction.
A partir de cette structure de bandes, Pauli va montrer que les atomes peuplent d'abord les états de plus basse énergie. Ils vont ainsi remplir complètement la bande de valence, et laisser la bande de conduction vide. Il montre alors que dans une telle configuration les électrons ne peuvent pas conduire l'électricité.
figure5
Les électrons de la bande de valence, comme les pièces d'un jeu de taquin
Pour illustrer ses propos, comparons la matière à un jeu de taquin ( Figure 5). Rappelons que le taquin est un puzzle fait de pièces carrées et où ne manque qu'une pièce. C'est l'absence d'une pièce qui permet de déplacer les pièces présentes. Pour Pauli, une bande de valence pleine d'électrons, est comme un taquin qui n'aurait pas de trous : aucun élément ne peut bouger, car toutes les cases sont occupées. C'est pourquoi beaucoup de matériaux, notamment les semi-conducteurs (qui, comme leur nom l'indique sont de mauvais conducteurs), ne peuvent pas conduire le courant, leur bande de valence étant trop pleine. Pour conduire l'électricité, il va être nécessaire de prendre des électrons de la bande de valence, et de les envoyer dans la bande de conduction. Alors les rares électrons dans la bande de conduction auront tout l'espace nécessaire pour bouger, ils conduiront aisément le courant. De plus, ces électrons auront laissé de la place dans la bande de valence, ce qui revient, dans notre image, à enlever une pièce au taquin. Les électrons pourront alors bouger, mal, mais ils pourront bouger. Ce déplacement des électrons dans la bande de valence peut être réinterprété : on peut considérer qu'un électron se déplace pour occuper une place vacante, puis qu'un autre électron va occuper la nouvelle place vacante, et ainsi de suite... ou on peut considérer que nous sommes en présence d'un trou (une absence d'électron) qui se déplace dans le sens opposé au mouvement des électrons ! Cette interprétation nous indique alors que, dans la bande de valence, ce ne sont pas les électrons qui vont bouger, ce sont les « absences d'électrons », c'est-à-dire des trous, qui sont, de fait, de charge positive.
Wigner, Pauli et Seitz venaient de résoudre une énigme qui datait du temps de Faraday (1791-1867), où l'on avait observé des charges positives se déplaçant dans la matière sans avoir idée de ce que c'était. Il s'agit en fait des trous se déplaçant dans la bande de valence. Pour la suite, nous nous intéresserons donc aux électrons se trouvant dans la bande de conduction, et aux trous de la bande de valence.
Comment envoyer ces électrons de la bande de valence vers la bande de conduction ? En utilisant le photon ! Le photon va percuter un électron de la bande de valence et créer une paire électron-trou, c'est-à-dire qu'il va laisser un trou dans la bande de valence et placer un électron dans la bande de conduction. Il s'agit d'un phénomène d'absorption car au cours de ce processus, le photon disparaît. Il a été transformé en paire électron-trou.
Evidemment le mécanisme inverse est possible : si on arrive à créer par un autre moyen une paire électron-trou, l'électron va quitter la bande de conduction pour se recombiner avec le trou dans la bande de valence, et émettre un photon. La longueur d'onde du photon émis correspondra à l'énergie de la bande interdite ( energy gap en anglais). Il y a donc une correspondance fondamentale entre la couleur du photon émis et l'énergie de la bande interdite.
figure6
Gap d'énergie et distance inter-atomiques des principaux semi-conducteurs
La Figure 6 montre l'énergie de la bande interdite pour différents matériaux. On constate que certains matériaux se retrouvent sur la même colonne, c'est-à-dire qu'ils ont la même distance inter-atomique. C'est le cas par exemple de l'Arséniure de Gallium (GaAs) et de l'Aluminure d'Arsenic (AlAs). Etant des « jumeaux cristallographiques », il sera aisé de les mélanger, les faire croître l'un sur l'autre. En revanche, ils ont des bandes d'énergie interdite très différente. A partir de ce graphique, on peut donc conclure quel semi-conducteur conviendra à la lumière que l'on veut produire. Ainsi, la lumière rouge sera émise par le Phosphure de Gallium (GaP). Pour aller dans l'infrarouge lointain, un mélange entre CdTe et HgTe est cette fois préconisé.
Le dopage et la jonction P-N
Nous venons de présenter la première brique de l'optoélectronique, à savoir l'énergie de la bande interdite. La deuxième brique qui va nous permettre de réaliser des composants optoélectroniques va être le dopage. Comme nous l'avons dit précédemment, un semi-conducteur, si on n'y ajoute pas des électrons, conduit aussi bien qu'un bout de bois (c'est-à-dire plutôt mal !). Pour peupler la bande de valence, nous allons utiliser le dopage.
Nous nous intéresserons aux éléments des colonnes III, IV et V de la classification périodique des éléments de Mendeleïev (une partie en est représentée Figure 7). Le numéro de la colonne correspond au nombre d'électrons se trouvant sur la dernière couche électronique. Ainsi les éléments de la colonne IV, dits tétravalents, comme le Carbone et le Silicium, possèdent IV électrons sur leur dernière couche. Dans la colonne III (éléments trivalents), nous trouverons le Bore, et dans la colonne V (éléments pentavalents) se trouve le Phosphore.
figure7
Dopage de type P et dopage de type N
Regardons ce qui se passe si on introduit un élément pentavalent dans un cristal de Silicium. On peut dire que le Phosphore, tel l'adolescent dans une cour d'école, veut à tout prix ressembler aux copains. Ainsi, le Phosphore va imiter le Silicium et construire des liaisons électroniques avec 4 voisins. Il va donc laisser un électron tout seul. Cet électron va aller peupler la bande de conduction. C'est ce qu'on appelle le dopage de type N. Le Phosphore joue le rôle de Donneur d'électrons.
Le raisonnement est le même pour des éléments trivalents comme le Bore. Ce dernier va mimer le comportement du Silicium en créant 4 liaisons électroniques. Pour cela, il va emprunter un électron à la structure de Silicium, consommant ainsi un électron dans la bande de valence. Il crée donc un trou dans la bande de valence. Le dopage est dit de type P. Le Bore joue le rôle d'Accepteur d'électrons.
Le dopage n'est pas un processus aisé à réaliser. A l'heure actuelle, nous n'avons toujours pas trouvé le moyen de doper efficacement certains semi-conducteurs (c'est le cas du diamant par exemple). Pour le Silicium (Si) et l'Arséniure de Gallium (GaAs), le dopage est en revanche bien maîtrisé.
On va alors pouvoir réaliser des jonctions P-N ( Figure 8). Il s'agit en fait de juxtaposer un matériau dopé P avec un matériau dopé N. Dans la zone dopée N, le Phosphore a placé de nombreux électrons dans la bande de conduction. La zone dopée P quant à elle possède de nombreux trous dans la bande de valence. Nous sommes ainsi en présence délectrons et de trous qui se « regardent en chiens de faïence ». Ils vont donc se recombiner. Ainsi, à l'interface, les paires électrons trous vont disparaître, et laisser seules des charges négatives dans la zone dopée P, et des charges positives dans la zone dopée N. Ces charges fixes (qui correspondant en fait aux atomes dopants ionisés) vont créer un champ électrique. Cette jonction P-N sera au cSur de très nombreux composants optoélectroniques.
figure8
Jonction P-N: les électrons de la zone N se recombinent avec les trous de la zone P, laissant des charges nues dans une zone baptisée zone de charge d'espace. Les charges fixes induisent un champ électrique.
Le Puits Quantique
Dernière brique de l'optoélectronique que nous présenterons : le puits quantique. Ce dernier peut être considéré comme le fruit du progrès technologique. Dans les années 70-80, les ingénieurs étudient l'Ultra-Vide, c'est-à-dire les gaz à très basse pression (10-13 atmosphère). Comme il s'agit d'un milieu extrêmement pur, bien vite on se rend compte, que cela reproduit les conditions primordiales dans lesquelles les matériaux ont été créés. Dans un tel milieu, on va alors pouvoir « jouer au bon dieu » et empiler des couches d'atomes, créer des structures artificielles qui n'existent pas dans la nature.
Typiquement, il va être possible de réaliser des sandwichs de matériaux, où par exemple de l'Arséniure de Gallium (GaAs) serait pris entre deux tranches d'un matériau qui lui ressemble, AlGaAs (nous avons vu précédemment que AlAs et GaAs sont miscibles). Sur la photo ( Figure 9), issue d'un microscope électronique nous permettant d'observer les atomes, on voit que ces matériaux n'ont aucun problème à croître l'un sur l'autre. La couche de GaAs ne mesure que 20 angströms.
figure9
Puits quantique. En haut, sa composition. Au milieu une photo au microscope électronique d'une telle structure. En bas, diagramme d'énergie du puits quantique, la forme des oscillations de l'électron a également été représentée
Examinons le comportement de l'électron dans un tel milieu. Le GaAs a plus tendance à attirer les électrons que AlGaAs. L'électron se trouve piégé dans un puits de potentiel. C'est alors qu'intervient la mécanique quantique, réinterprétant le puits de potentiel en « puits quantique ». L'électron est une onde, une onde prisonnière entre deux murs (les barrières de potentiel formées par l' AlGaAs). L'électron ne va avoir que certains modes d'oscillation autorisés, comme l'air dans un tuyau d'orgue qui ne va émettre que des sons de hauteur bien définie.
Techniquement, il nous est possible de créer à peu près n'importe quel type de potentiel, puisqu'on est capable de contrôler l'empilement des atomes. Par exemple, plus on élargit le puits quantique, plus il y a de modes d'oscillation possibles pour l'électron, et plus il y a de niveaux d'énergies accessibles à l'électron. On peut ainsi synthétiser la répartition de niveau d'énergies que l'on souhaite.
Nous avons à présent un bon nombre d'outils de base que nous a fournis la mécanique quantique : la structure de bandes, le dopage et la jonction P-N qui en découle, et pour finir, le puits quantique. Nous allons à présent voir comment ces concepts entrent en jeu dans les composants optoélectroniques.
La détection quantique
Le principe de la photo-détection quantique (utilisé dans tous les appareils photo numérique) est extrêmement simple : il s'agit, à l'aide d'un photon, de faire transiter l'électron entre un niveau de base, où il ne conduit pas l'électricité, et un niveau excité où il va la conduire. Le semi-conducteur pur peut par exemple faire office de photo-détecteur quantique ( Figure 10): à l'état de base, il ne conduit pas le courant, mais un photon peut créer, par effet photoélectrique, une paire électron-trou et placer un électron dans la bande de conduction, permettant le transport du courant.
figure10
Deux mécanismes de détection quantique. A gauche, on utilise la structure de bande d'un semi-conducteur. A droite, un puits quantique.
Un puits quantique peut également réaliser cette fonction ( Figure 10): les électrons se trouvent piégés dans le puits quantiques, car la barrière d'AlGaAs les empêche de sortir, mais par absorption d'un photon, les électrons vont avoir l'énergie leur permettant de sortir du piège et donc de conduire le courant.
L'effet Photovoltaïque
Le détecteur quantique le plus répandu est la cellule photovoltaïque. Elle est constituée d'une jonction P-N. Imaginons que des photons éclairent la structure. Dans la zone ionisée (appelée zone de charge d'espace), ils vont alors créer des paires électron-trou. Mais cette région possédant un champ électrique du fait des charges fixes, les électrons vont être attirés par le Phosphore, les trous par le Bore, ce qui va générer un courant électrique.
figure11
Cellule photovoltaïque. En haut, la jonction P-N reçoit des photons qui créent des paires électron-trou. En bas, diagramme d'énergie montrant les électrons de la bande de conduction tombant dans la zone N, et les trous de la bande de valence remontant dans la zone P.
On peut représenter ce mécanisme sur un diagramme d'énergie ( Figure 11). Le champ électrique présent au niveau de la jonction P-N provoque une courbure de la bande de valence et de la bande de conduction. Le photon va créer une paire électron-trou. L'électron va glisser le long de la pente de la bande de conduction, et se retrouver dans la zone dopée N, tandis que le trou, tel une bulle dans un verre de champagne, va remonter la bande de valence et se retrouver dans la zone dopée P.
Les caméras CCD
Techniquement, il existe des technologies pour synthétiser ces minuscules détecteurs par millions en une seule fois. Ces détecteurs ont changé notre vie quotidienne. En effet, au cSur de tous les appareils photo et caméscopes numériques se trouve une matrice CCD ( charge coupled devices). Il ne s'agit pas exactement de jonctions P-N, mais d'une myriade de transistors MOS. Néanmoins les concepts physiques mis en jeu sont tout à fait analogues. Il s'agit d'une couche semi-conductrice de Silicium séparée d'une couche métallique par une couche isolante d'oxyde. Lorsqu'un photon arrive dans la zone courbée du diagramme de bande (c'est là encore, la zone de charge d'espace), une paire électron-trou est créée, les électrons vont s'accumuler à l'interface entre le semi-conducteur et l'isolant, il vont alors pouvoir être « évacués » par les transistors qui vont récupérer les « tas d'électrons » et se les donner, comme des pompiers se passant des bacs d'eau (d'où leur nom). Les matrices CCD actuelles ont des caractéristiques vertigineuses, contenant aisément 10 millions de pixels mesurant chacun 6 mm x 6 mm.
figure12
Matrice CCD. A gauche, diagramme d'énergie d'un transistor MOS (Métal Oxide Silicium). A droite, photo d'une matrice CCD
Les détecteurs infrarouges
Un deuxième type de détecteurs très importants sont les détecteurs infrarouge, notamment ceux détectant les longueurs d'onde comprises entre 3 et 5 mm, et entre 8 et 12 mm. Comme nous l'avons mentionné au début, le corps humain à 37°C rayonne énormément de lumière, sur toute une gamme de longueurs d'onde (représentée en bleu sur la Figure 13), centrée autour de 10 mm. Mais l'atmosphère ne laisse pas passer toutes les longueurs d'onde (la courbe rouge représente la transmission de l'atmosphère). Et justement entre 3 et 5 mm, et entre 8 et 12 mm, elle a une « fenêtre de transparence ». En particulier, à plus haute altitude, un avion peut voir à plusieurs centaines de kilomètres dans la bande 8-12 mm. Un autre intérêt de détecter cette gamme de longueur d'onde est qu'elle correspond à l'absorption de certains explosifs qui seraient alors détectables.
figure13
Spectre de transmission de l'atmosphère (courbe rouge), et spectre d'émission du corps humain, c'est-à-dire d'un corps noir à 37°C (courbe bleue)
Comment réaliser ces détecteurs autour de 5 et de 10 mm (c'est-à-dire ayant un gap d'énergie de 0,1 à 0,2 eV)? La Figure 6 nous indique que le couple CdTe (Tellure de Mercure) - HgTe (Tellure de Cadmium) est un bon candidat. Notons au passage que la France, grâce notamment aux laboratoires du CEA et de l'ONERA) est leader mondial dans ce domaine. Avec de tels détecteurs, il devient possible de voir des avions furtifs, indétectables par radar. Des applications existent aussi dans le domaine médical, où ces capteurs permettent de déceler certaines variations locales de température sur une simple image. Il est également possible de détecter le niveau de pétrole à l'intérieur d'un conteneur, l'inertie thermique du pétrole différant de celle de l'air.
figure14
Exemples d'images prises par des détecteurs infrarouges (source : www.x20.org)
Les cellules solaires
Dernier type de détecteur que nous examinerons : les cellules solaires, qui transforment la lumière en électricité. Le matériau roi (parce que le moins cher) dans ce domaine est le Silicium. Malheureusement son rendement quantique n'est pas bon (15%), c'est-à-dire que le Silicium absorbe très bien le rayonnement à 1 eV, tandis que le soleil émet essentiellement entre 2 à 3 eV. Des recherches sont actuellement menées afin de développer des matériaux absorbant plus efficacement dans ces gammes d'énergie. Ces recherches sont extrêmement importantes pour les nouvelles sources d'énergie.
Les émetteurs de lumière
Diodes électroluminescentes
On se rappelle qu'en se recombinant, les paires électron-trous créent un photon. Réaliser un émetteur de lumière est donc possible à partir d'un puits quantique ( Figure 15). Ce dernier confine les électrons. Prenons, comme précédemment, le cas d'un puits quantique de GaAs « sandwiché » entre deux domaines d'AlGaAs. Cette fois, nous dopons N l'AlGaAs se trouvant d'un côté du puits, et P l'AlGaAs se trouvant de l'autre côté. Si on fait passer du courant dans cette structure, les électrons de la zone dopée N vont tomber dans le puits quantique, les trous de la zone dopée P vont monter dans le puits de la zone de valence. Une fois dans le puits quantique, électrons et trous vont se recombiner et émettre un photon. Ce composant est appelé Diode Electroluminescente (LED). Ce n'est ni plus ni moins qu'un photo-détecteur dans lequel on a forcé le courant à passer.
figure15
Diagramme d'énergie d'une diode électroluminescente. Trous de la zone P et électrons de la zone N vont être piégés dans le puits quantique et se recombiner en émettant de la lumière
Les LED remplissent, elles aussi notre quotidien. Elles ont un énorme avantage sur d'autres type d'éclairage : le processus de création de photon d'une LED est extrêmement efficace. En effet, dans une LED chaque électron donne un photon. Ainsi avec un courant d'un ampère, on obtient une puissance lumineuse d'environ un Watt, alors qu'une ampoule ne donnera que 0,1W pour le même courant. L'utilisation plus répandue des LED pour l'éclairage aura un impact extrêmement important pour les économies d'énergie et l'environnement. A l'heure actuelle, elles sont utilisées dans nos télécommandes, les panneaux d'affichages, les feux de signalisation.
Depuis quelques temps les diodes rouges, orange et vertes existent. La diode bleue, plus récemment apparue a connue une histoire insolite. En 1974, des ingénieurs se penchent sur le problème de la réalisation d'une telle diode, et trouvent qu'un matériau possède le gap d'énergie adéquat (3-4 eV) : le Nitrure de Gallium (GaN). Ils vont alors chercher à le doper... pendant 10 ans... sans succès. En 1984, un grand théoricien soutient, démonstration à l'appui, qu'il n'est théoriquement pas possible de doper un tel semi-conducteur. Toutes les équipes arrêtent alors progressivement leurs recherches sur le sujet... toutes, sauf une. Celle du Dr. Nakamura (qui sans doute n'avait pas lu l'article de l'éminent théoricien) de la société Japonaise Nichia. En 1993, il trouve que le Magnésium (Mg) dope le Nitrure de Gallium ! Dix ans après, sa découverte a révolutionné le marché de l'optoélectronique. En effet, avec les autres couleurs de LED, il est à présent possible de réaliser d'immenses écrans publicitaires...
Diodes lasers
Etudions à présent l'émission stimulée. Nous avons vu que le semi-conducteur pouvait absorber un photon, qu'il pouvait également en émettre s'il possède un électron dans sa bande de conduction. En 1917, Albert Einstein s'aperçoit qu'il manque un mécanisme dans cette description de l'interaction entre la lumière et la matière. Par une démarche purement théorique, il va découvrir un nouveau phénomène : l'émission stimulée ( Figure 16).
Dans l'émission stimulée, l'électron est dans l'état excité. Arrive alors un photon, qui va stimuler la désexcitation de l'électron. Cette désexcitation va naturellement s'accompagner de l'émission d'un autre photon, dit photon stimulé. Si on se trouve dans un matériau où beaucoup d'électrons sont excités, un photon va alors pouvoir donner 2, puis 4, puis 8 ... photons ! Ce phénomène est appelé l'amplification optique.
figure16
Diagramme des mécanismes d'absorption, d'émission spontanée, et d'émission stimulée
Il est alors possible de réaliser un LASER. Pour cela, il suffit de placer deux miroirs aux extrémités de l'amplificateur optique. La lumière va être amplifiée lors d'un premier passage, une partie va être émise en dehors de la cavité, l'autre partie va être réfléchie et refaire un passage dans le milieu amplificateur. La même chose se produit sur le deuxième miroir. Si après un tour on a plus d'énergie qu'au départ, nous sommes face à un phénomène d'avalanche où le nombre de photons créés va croître très rapidement. Le système se met à osciller, c'est l'oscillation LASER.
John von Neumann, l'inventeur de l'ordinateur, prévoit que les semi-conducteurs devraient permettre de réaliser des lasers. En effet en partant d'un puits quantique et en y plaçant beaucoup d'électrons et de trous, nous allons obtenir notre milieu amplificateur. En plaçant des miroirs aux extrémités du puits quantique, on obtient alors un laser ( Figure 17). Le laser à semi-conducteur sera découvert 50 ans après, et par 3 laboratoires différents (General Electric, IBM et Bell Labs) en l'espace de 10 heures !
figure17
Schéma d'une diode laser. Le milieu à gain est constitué par la jonction P-N. A ses extrémités des miroirs forment la cavité, et laissent sortir un faisceau laser unidirectionnel
L'intérêt du laser à semi-conducteur est qu'on peut concentrer toute la puissance lumineuse sur un fin pinceau lumineux. Là encore, les applications sont nombreuses : pointeurs, lecteur de CD, télécommunications... Revenons un instant sur l'importance des matériaux émettant dans le bleu (le Nitrure de Gallium). Le laser bleu va en effet avoir des retombées importantes dans le domaine des disques lasers. Le principe du lecteur de disque est d'envoyer un laser sur la surface du disque qui réfléchit (ou non) la lumière, lumière qui est alors lue par un détecteur quantique. La surface du disque est criblée de trous stockant les bits d'information. Il se trouve que la dimension minimale d'un faisceau laser correspond à la longueur d'onde qu'il émet. Ainsi la tâche d'un laser rouge est de 0,8 mm, tandis que celle d'un faisceau bleu est de 0,4 mm. On pourra donc lire 4 fois plus d'information avec un laser bleu Les diodes bleues vont donc progressivement (et rapidement) remplacer les diodes rouges des lecteurs de disques.
La lumière d'un laser va également pouvoir être envoyée à l'intérieur d'une fibre optique, qui est une structure guidant la lumière au cSur d'un guide en verre (silice) de 4 mm de diamètre. La fibre optique permet alors de transporter énormément d'information extrêmement rapidement. A l'heure actuelle, les fibres optiques permettent d'envoyer en un dixième de seconde tout le contenu de l'Encyclopedia Universalis à 3000 km ! Cette révolution technologique, fruit de l'optoélectronique, est à la base du succès d'Internet.
Les nouvelles frontières
L'optoélectronique est un des domaines scientifiques les plus effervescents à l'heure actuelle, et de nombreuses technologies encore balbutiantes semblent très prometteuses dans un proche future : il s'agit par exemple des cristaux photoniques, des oscillateurs paramétriques optiques, de la nano-optique,... Nous nous intéresserons ici aux nouvelles longueurs d'ondes ainsi qu'au domaine des attosecondes.
Les ondes Térahertz
L'optoélectronique investit aujourd'hui de nouvelles longueurs d'onde, et ne se cantonne plus au domaine du visible et de l'infrarouge. Ces ondes appartiennent à la famille des ondes électromagnétiques ( Figure 18), qui renferme également, les ondes radio, les ondes radars et micro-ondes,... Entre les ondes radio et les ondes optiques, se trouve le domaine des ondes dites Térahertz (THz), qui jusqu'à peu ne disposaient pas de sources efficaces. L'optoélectronique développe actuellement de nouvelles sources lasers dans ce domaine, resté pendant longtemps une terra incognita.
figure18
Le spectre des ondes électromagnétiques
De telles sources permettront de développer de nouveaux systèmes de sécurité, car ils permettront notamment de voir à travers les vêtements. En effet, même au travers de matériaux opaques, les photons pénètrent, sur une longueur de quelques longueurs d'onde. Dans le cas des ondes Térahertz, la longueur d'onde est de 300 mm, le photon va pénétrer un matériau opaque sur plusieurs millimètres ! L'onde Térahertz pourra ainsi traverser les vêtements. La Figure 19 montre comment un couteau caché par un journal a pu être détecté par de l'imagerie Térahertz.
figure19
Image d'une scène dans le visible (à gauche) et dans les Térahertz (à droite). La grande longueur d'onde des ondes Térahertz permet de traverser les vêtements et les journaux.
(Jefferson Lab : www.jlab.org)

Les attosecondes
Une autre percée réalisée par l'optoélectronique concerne l'étude des temps très courts. Le domaine des attosecondes est désormais accessible à l'expérience. Une attoseconde ne représente que 0,000 000 000 000 000 001 seconde (10-18 seconde)! Il y a autant d'attosecondes dans une seconde que de secondes écoulées depuis la création de l'univers.
Pour créer des impulsions aussi courtes, il faut des ondes ayant des fréquences très élevées. L'impulsion la plus courte qu'on puisse faire avec une onde consistera à ne prendre qu'une seule oscillation de l'onde. L'optoélectronique nous propose des techniques qui permettent de ne découper qu'une seule oscillation du champ électromagnétique. Si on prend de la lumière visible (de fréquence 1015 Hz), on est capable de découper une tranche de 10-15 seconde (une femtoseconde). On peut aujourd'hui aller encore plus loin, et atteindre le domaine des attosecondes.
La Figure 20 montre en fonction du temps les plus petites durées atteignables par l'électronique et par l'optoélectronique. L'électronique, ayant des fréquences limitées à quelques gigahertz (GHz) est actuellement limitée, tandis que l'optique, avec des photons aux fréquences bien plus élevées permet de sonder des durées bien plus faibles.
figure20
Evolution des plus petites durées mesurables par l'électronique et l'optoélectronique dans les 40 dernières années
L'électron met environ 150 attosecondes pour « faire le tour » de l'atome d'Hydrogène. Nous devrions donc avoir d'ici peu les techniques permettant d'observer ce mouvement ! On retrouve le cercle vertueux que nous avions évoqué au début : la science fondamentale a fourni des technologies, et ces technologies, en retour, fournissent aux sciences fondamentales des possibilités d'observer de nouveaux domaines du savoir et de la connaissance de l'univers.

 

 VIDEO     canal U       LIEN

 
 
 
  RAYONS COSMIQUES
 

 

 

 

 

 

 

Paris, 16 mars 2016
Au centre de la Voie Lactée, une source accélère des rayons cosmiques galactiques à des énergies inégalées


L'analyse détaillée des données recueillies par l'observatoire H.E.S.S, en Namibie, a permis de localiser une source de rayonnement cosmique à des énergies jamais encore observées dans notre Galaxie : le trou noir supermassif situé en son centre. H.E.S.S, auquel contribuent le CNRS et le CEA, détecte indirectement le rayonnement cosmique depuis plus de dix ans et a dressé une cartographie, en rayons gamma de très haute énergie, des régions centrales de notre Galaxie. L'identification de cette source hors du commun est publiée ce 16 mars 2016 dans Nature.
Des particules du rayonnement cosmique jusqu'à des énergies d'environ 100 téraélectronvolts (TeV)1 sont produites dans notre Galaxie par des objets comme les vestiges de supernova et les nébuleuses à vent de pulsar. Divers arguments théoriques, couplés aux observations directes des rayons cosmiques atteignant la Terre, indiquent que les "usines" galactiques de rayons cosmiques devraient être capables de produire des particules jusqu'à des énergies d'au moins un pétaélectronvolt (PeV)2, énergies 100 fois plus élevées que celles jamais atteintes par l'Homme. Alors que ces dernières années ont vu la découverte de nombreux accélérateurs au TeV et à quelques dizaines de TeV, les sources de plus haute énergie restaient inconnues.

L'analyse détaillée de la région du centre galactique observée pendant près de dix ans par le réseau de télescopes H.E.S.S. (High Energy Stereoscopic System), en Namibie, auquel contribuent le CNRS et le CEA., est publiée aujourd'hui dans la revue Nature. Lors de ses trois premières années d'observation, H.E.S.S a permis de découvrir une source ponctuelle et très puissante de rayons gamma au centre galactique, ainsi qu'une émission diffuse provenant des nuages moléculaires géants qui l'entourent dans une région d'environ 500 années-lumière de large. Ces nuages moléculaires, lorsqu'ils sont bombardés par des protons de très haute énergie, émettent des rayons gamma produits lors de l'interaction des protons avec la matière des nuages. La correspondance spatiale entre l'émission diffuse observée et la quantité de matière dans les nuages (déduite d'autres observations) indiquait la présence d'un ou plusieurs accélérateurs de rayons cosmiques (en particulier de protons) tapis quelque part dans cette région, mais cette source restait inconnue.

Les observations plus approfondies, obtenues par H.E.S.S. entre 2004 et 2013, apportent un nouvel éclairage sur cette question. Le volume record de données récoltées ainsi que les progrès effectués dans les méthodes d'analyse permettent de mesurer la répartition spatiale des protons et leur énergie et de localiser l'origine de ces rayons cosmiques. Il s'agit d'une source cosmique située au centre exact de la Voie Lactée, capable d'accélérer des protons jusqu'à des énergies voisines du pétaélectronvolt. Les chercheurs pensent qu'elle émet sans interruption depuis au moins mille ans. Elle constituerait ainsi le premier "Pévatron"3 jamais observé.

Le centre de notre Galaxie abrite de nombreux objets susceptibles de produire des rayons cosmiques de très haute énergie, dont en particulier un reste de supernova, une nébuleuse à vent de pulsars mais aussi un amas compact d'étoiles massives. Cependant, le trou noir supermassif localisé au centre de la Galaxie, Sagittarius A*, est de loin le candidat le plus vraisemblable. Plusieurs régions d'accélération sont envisageables : soit le voisinage immédiat du trou noir soit une région plus éloignée, où une fraction de la matière tombant sur le trou noir est réinjectée dans l'environnement et peut initier de l'accélération de particules.

L'observation des rayons gamma permet de mesurer indirectement le spectre en énergie des protons accélérés par le trou noir central. Ce spectre indique que Sagittarius A* accélèrerait encore maintenant des protons jusqu'au PeV. L'activité actuelle de la source ne permet pas d'expliquer à elle seule l'intensité du rayonnement cosmique observé sur Terre. Mais si le trou noir central avait été encore plus actif dans le passé, il a pu produire à lui seul la quasi-totalité du rayonnement cosmique galactique observé à ces énergies. Un argument décisif au débat centenaire sur l'origine des rayons cosmiques galactiques !

La détection des rayons cosmiques par H.E.S.S

La Terre est bombardée en permanence par des particules de haute énergie (protons, électrons et noyaux atomiques) en provenance du cosmos, particules qui constituent ce que l'on appelle le "rayonnement cosmique". Ces particules étant chargées électriquement, elles sont déviées par les champs magnétiques du milieu interstellaire de la Galaxie et il est impossible d'identifier directement les sources astrophysiques responsables de leur production. Ainsi, depuis plus d'un siècle, l'identification de l'origine du rayonnement cosmique reste l'un des plus grands défis de la science.
Heureusement, les particules cosmiques interagissent avec la lumière et le gaz au voisinage de leur source et produisent alors des rayons gamma qui, eux, se déplacent en ligne droite, permettant ainsi de remonter à leur origine. Ceux d'entre eux qui atteignent la Terre, au contact de la haute atmosphère, produisent une gerbe de particules secondaires émettant une lumière très brève et ténue4. De nombreuses sources du rayonnement cosmique ont donc pu être identifiées ces dernières décennies en détectant cette lumière à l'aide de grands télescopes munis de caméras à haute définition temporelle comme le réseau de télescopes H.E.S.S. .Ce réseau, le plus performant au monde dans son domaine, est géré par une collaboration de 12 pays regroupant des scientifiques de 42 organismes.

H.E.S.S : dix laboratoires français impliqués

Centre d'études nucleaires de Bordeaux Gradignan (CENBG, CNRS/Université de Bordeaux)
Centre de physique des particules de Marseille (CPPM, CNRS/Aix Marseille Université)
Institut de planétologie et d'astrophysique de Grenoble (IPAG, CNRS/Université Grenoble Alpes)
Institut de recherche sur les lois fondamentales de l'univers (Irfu, CEA)
Laboratoire AstroParticule et cosmologie (APC, CNRS/CEA/Université Paris Diderot/Observatoire de Paris)
Laboratoire d'Annecy-le-Vieux de physique des particules (Lapp, CNRS/Université Savoie Mont Blanc)
Laboratoire Leprince-Ringuet (LLR, CNRS/Ecole Polytechnique)
Laboratoire physique nucléaire et hautes énergies (LPNHE, CNRS/Université Pierre et Marie Curie/Université Paris Diderot)
Laboratoire Univers et particules de Montpellier (LUPM, CNRS/Université de Montpellier)
Laboratoire Univers et théories (Luth, CNRS/Observatoire de Paris/Université Paris Diderot)

 

 DOCUMENT       cnrs        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ] - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google