Pandoravirus : des virus géants qui inventent leurs propres gènes
 

 

 

 

 

 

 

Pandoravirus : des virus géants qui inventent leurs propres gènes

COMMUNIQUÉ | 11 JUIN 2018 - 15H44 | PAR INSERM (SALLE DE PRESSE)

BASES MOLÉCULAIRES ET STRUCTURALES DU VIVANT | CANCER | GÉNÉTIQUE, GÉNOMIQUE ET BIO-INFORMATIQUE | IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE




La famille de virus géants pandoravirus s’enrichit de trois nouveaux membres, isolés par des chercheurs du laboratoire Information génomique et structurale (CNRS/Aix‐Marseille Université), associés au laboratoire Biologie à grande échelle (CEA/Inserm/Université Grenoble‐Alpes) et au CEA-Genoscope. Lors de sa découverte1, cette famille de virus avait étonné par son étrangeté – génomes géants, nombreux gènes sans équivalent connu. Dans Nature Communications le 11 juin 2018, les chercheurs proposent une explication : les pandoravirus seraient des fabriques à nouveaux gènes – et donc à nouvelles fonctions. De phénomènes de foire à innovateurs de l’évolution, les virus géants continuent de secouer les branches de l’arbre de la vie !
 
En 2013, la découverte de deux virus géants ne ressemblant à rien de connu brouillait la frontière entre monde viral et monde cellulaire[1]. Ces pandoravirus sont aussi grands que des bactéries et dotés de génomes plus complexes que ceux de certains organismes eucaryotes[2]. Mais leur étrangeté – une forme inédite d’amphore, un génome énorme[3] et atypique – posait aussi la question de leur origine.
La même équipe a depuis isolé trois nouveaux membres de la famille à Marseille, Nouméa et Melbourne. Avec un autre virus trouvé en Allemagne, cela fait désormais six cas connus que l’équipe a comparés par différentes approches. Ces analyses montrent que, malgré une forme et un fonctionnement très similaires, ils ne partageant que la moitié de leurs gènes codant pour des protéines. Or, les membres d’une même famille ont généralement bien plus de gènes en commun…
De plus, ces nouveaux membres de la famille possèdent un grand nombre de gènes orphelins, c’est‐à‐dire codant pour des protéines sans équivalent dans le reste du monde vivant (c’était déjà le cas pour les deux premiers pandoravirus découverts). Cette caractéristique inexpliquée est au cœur de tous les débats sur l’origine des virus. Mais ce qui a le plus étonné les chercheurs, c’est que ces gènes orphelins sont différents d’un pandoravirus à l’autre, rendant de plus en plus improbable qu’ils aient été hérités d’un ancêtre commun à toute la famille !

Analysés par différentes méthodes bioinformatiques, ces gènes orphelins se sont révélés très semblables aux régions non‐codantes (ou intergéniques) du génome des pandoravirus. Face à ces constats, un seul scénario pourrait expliquer à la fois la taille gigantesque des génomes des pandoravirus, leur diversité et leur grande proportion de gènes orphelins : une grande partie des gènes de ces virus naîtrait spontanément et au hasard dans les régions intergéniques. Des gènes « apparaissent » donc à des endroits différents d’une souche à l’autre, ce qui explique leur caractère unique. 

Si elle est avérée, cette hypothèse révolutionnaire ferait des virus géants des artisans de la créativité génétique, qui est un élément central, mais encore mal expliqué, de toutes les conceptions de l’origine de la vie et de son évolution.
[1] Communiqué de presse du 18 juillet 2013 : http://www2.cnrs.fr/presse/communique/3173.htm
[2] Organismes dont les cellules sont dotées de noyaux, contrairement aux deux autres règnes du vivant, les bactéries et les archées.
[3] Jusqu’à 2,7 millions de bases.
Voir aussi « Behind the paper: Giant pandoraviruses create their own genes » sur le blog natureecoevocommunity.nature.com

Ces recherches ont bénéficié, entre autres, d’un financement de la Fondation Bettencourt Schueller à Chantal Abergel, lauréate 2014 du prix « Coup d’élan pour la recherche française ».

 

 DOCUMENT      inserm     LIEN 

 
 
 
  Selon le sexe et l’âge, les cellules immunitaires du cerveau réagissent différemment à des perturbations du microbiote
 

 

 

 

 

 

 

Selon le sexe et l’âge, les cellules immunitaires du cerveau réagissent différemment à des perturbations du microbiote
COMMUNIQUÉ | 21 DÉC. 2017 - 18H00 | PAR INSERM (SALLE DE PRESSE)

BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION



Une étude conjointe entre des chercheurs Inserm de l’IBENS (Institut de biologie de l’Ecole Normale Supérieure – Inserm/CNRS/ENS Paris) à Paris et des chercheurs du SIgN (Singapore Immunology Network, A*STAR) de Singapour montre un rôle inédit du microbiote sur des cellules immunitaires du cerveau dès le stade fœtal. Ces cellules immunitaires, les microglies, jouent un rôle clé dans le développement et le fonctionnement cérébral et sont différemment perturbées par des modifications du microbiote chez les souris mâles et femelles à différents stades de la vie. Les résultats de ces travaux sont publiés dans la revue Cell.

Les microglies sont des cellules immunitaires qui répondent à des traumatismes ou des signaux inflammatoires pour protéger le cerveau, agissant comme des senseurs capables de détecter de nombreux signaux environnementaux. Ces cellules immunitaires sont également impliquées dans différentes étapes du développement et du fonctionnement cérébral. Ainsi, des dysfonctionnements de ces cellules sont associés à un large spectre de pathologies humaines, allant des troubles neuro-développementaux jusqu’aux maladies neurodégénératives. Les microglies jouent donc un rôle crucial dans le fonctionnement normal et pathologique du cerveau, ce qui laisse suggérer qu’elles constituent une interface régulatrice entre les circuits cérébraux et l’environnement.

Pour tester cette hypothèse, Morgane Thion et Sonia Garel, chercheuses Inserm, et leurs collaborateurs, ont utilisé une approche multidisciplinaire sur des modèles de souris axéniques, qui n’ont pas de microbiote (ensemble des bactéries présentes dans l’organisme) et des modèles de souris adultes traitées avec un cocktail d’antibiotiques (qui détruisent de façon aigue le microbiote). En combinant analyses génomiques globales et études histologiques, les chercheurs ont montré que les microglies sont profondément affectées par un dysfonctionnement du microbiote, dès les stades prénataux et ce, en fonction du sexe de l’animal : les microglies appartenant à des mâles semblent affectées au stade prénatal alors que les microglies issues de femelles le sont à l’âge adulte. Ce surprenant dimorphisme sexuel fait écho au fait que l’occurrence de nombreuses pathologies neurodéveloppementales est plus élevée chez les hommes alors que les maladies auto-immunes sont plutôt prévalentes chez les femmes.

Si les mécanismes impliqués et les conséquences fonctionnelles restent à découvrir, cette étude révèle un rôle clé des microglies à l’interface entre environnement et cerveau et montre que les mâles et femelles auraient des susceptibilités différentes à des altérations du microbiote. Pour les auteurs, ces éléments mériteraient maintenant d’être pris en considération au niveau clinique et ce, dès les stades fœtaux.

 

  DOCUMENT      inserm     LIEN 

 
 
 
  Rechercher un gène dans une botte de lettres
 

 

 

 

 

 

 

Rechercher un gène dans une botte de lettres


François Rechenmann dans mensuel 388
daté juillet-août 2005 -

Décrypter toujours plus de génomes est une prouesse technologique. Encore faut-il parvenir à identifier les gènes qu'ils contiennent. Seuls des algorithmes efficaces peuvent éclairer ces longues listes de lettres.

Homme, poulet, chien, boeuf, rat, etc. : au total, le patrimoine génétique de plus de 250 organismes a été aujourd'hui décodé. Dans ce lot, il y a notamment plus de 200 bactéries [1]. A-t-on percé pour autant les secrets du fonctionnement des cellules ? Loin de là ! Disposer des séquences génétiques est une chose, mais trouver les fragments d'intérêt, les fameux gènes, en est une autre.
La liste brute des lettres A, C, G ou T les initiales des quatre types de nucléotides qui composent l'ADN n'est pas simple à lire : comment distinguer les gènes parmi les trois milliards de lettres que compte le génome humain ? En d'autres termes : comment identifier les fragments de séquences qui contiennent l'information nécessaire à la synthèse des protéines* et, ensuite, comment déterminer les fonctions de chaque protéine ?
Seuls des programmes informatiques sont à même de parcourir cette longue chaîne de caractères pour y chercher les indices suggérant la présence d'un gène. Seuls des programmes peuvent aussi recouper ces indices afin de déterminer précisément la structure de ce que l'on suppose être un gène, ainsi que de prédire la ou les protéines qu'il code.

« Start » et « stop »
Comment part-on à la recherche d'un gène ? Tout d'abord, on sait qu'il s'agit d'une succession de groupes de trois nucléotides, appelés « codons ». Chaque codon dicte la présence d'un acide aminé dans la protéine. Il existe une correspondance entre les 64 4 × 4 × 4 codons possibles et les 20 acides aminés c'est le code génétique. Pour identifier un gène, il faut savoir où il commence et où il termine. Or, on sait que tous les gènes commencent par un codon « start » le triplet ATG et se terminent par un codon « stop » TAA, TAG ou TGA.
Suffit-il de rechercher ces différents triplets dans la séquence pour délimiter les gènes ? La solution n'est malheureusement pas aussi simple. En effet, tous ces triplets peuvent aussi se trouver à l'extérieur des gènes. De plus, le triplet « start » ATG peut, à l'inverse, apparaître au sein même d'un gène et coder alors un acide aminé.

Affiner les stratégies
La stratégie des bio-informaticiens consiste tout d'abord à rechercher ce qu'ils appellent des ORF, pour « Open Reading Frames », que l'on pourrait traduire par « phases ouvertes de lecture » : il s'agit de sous-séquences encadrées par deux triplets « stop », mais qui n'en contiennent pas. L'existence d'une ORF est une condition nécessaire mais pas suffisante à la présence d'un gène. Aussi, on impose également une longueur minimale pour ces ORF : par exemple 300 lettres, soit 100 triplets. En réalité, le gène est toujours plus court puisque les algorithmes recherchent le triplet ATG le plus proche, en aval, du premier triplet « stop » et le retiennent comme le codon « start » débutant le gène hypothétique qui se termine sur le second triplet stop [fig. 1].
Appliquée au texte du génome de la bactérie Bactilus subtilis, dont la séquence compte 4,2 millions de nucléotides, cette stratégie permet de prédire correctement l'existence de 3 500 des quelques 4 100 gènes connus de ce génome très étudié [2], mais en prédit plus de 1 200 qui n'en sont pas. Est-il possible d'affiner cette stratégie et de réduire le nombre de « faux positifs » ? Il faut pour cela accumuler d'autres indices. Par exemple, en cherchant, en amont du codon « start », une configuration particulière de lettres qui correspond au site de fixation de la molécule d'ARN messager sur le ribosome*. La présence d'un tel « RBS » pour « Ribosome Binding Site » conforte la prédiction du gène. D'autres configurations de lettres, ou motifs, correspondant à la présence de sites d'interaction de l'ADN avec des molécules diverses peuvent aussi être recherchées afin de confirmer les prédictions, de les réfuter ou de les amender.

Six séquences
Bien que les triplets « start » et « stop » soient des motifs simples et courts, la taille des séquences et le grand nombre d'occurrences obligent à concevoir des algorithmes de recherche qui évitent les comparaisons inutiles de lettres. Et ce d'autant plus qu'il existe trois manières de grouper les lettres d'une séquence trois par trois, selon que cette opération débute à la première lettre de la séquence, à la deuxième ou à la troisième. Comme, de plus, un gène peut tout aussi bien être porté par un brin de l'ADN que par son complémentaire dans la double hélice, c'est finalement dans six séquences différentes que la recherche des gènes doit s'effectuer.
La recherche de RBS fournit un exemple d'un autre type de problèmes algorithmiques. Pour un organisme donné, il n'existe pas un motif unique qui puisse être associé à tous les sites de fixation du ribosome. Les bio-informaticiens sont donc conduits à développer des méthodes de recherche de « motifs flous », tout en minimisant le temps d'exécution.

Conforter la prédiction
Comment s'assurer qu'une séquence correspond bien à un gène ? Afin de conforter la prédiction, on parcourt des bases de séquences telles qu'EMBL [3] pour y rechercher des séquences similaires. Il est aussi possible de traduire la séquence du gène hypothétique en une séquence protéique, puis de regarder s'il existe des séquences protéiques similaires - par exemple dans la base Swiss-Prot [4].
Si une information sur la fonction de la protéine correspondant à ces séquences est disponible, il est alors tentant de l'attribuer à la protéine prédite. Par abus de langage, on dira que l'on a prédit la fonction du gène.
La stratégie bio-informatique de prédiction de gènes esquissée ici est rudimentaire, mais elle fournit déjà des résultats acceptables sur des génomes bactériens. D'autres algorithmes, plus complexes, possèdent de bien meilleures capacités de prédiction. C'est le cas de ceux qui, grâce à des concepts statistiques tels que les modèles de Markov, sont capables de reconnaître les agencements de nucléotides caractéristiques d'une région codante.

Le cas des eucaryotes
Ces algorithmes sont déployés pour l'analyse des génomes eucaryotes, dont celui de l'homme. En effet, outre leur taille plus importante de plusieurs ordres de grandeur, ces génomes présentent des caractéristiques qui rendent beaucoup plus difficile la prédiction des gènes. D'une part, ceux-ci y sont beaucoup plus espacés que dans un génome bactérien il est courant que deux gènes soient séparés par plusieurs milliers de nucléotides ; d'autre part, les gènes possèdent une structure morcelée qui, entre un codon « start » et un codon « stop », alterne régions codantes, appelées « exons », et non codantes, appelées « introns ». De ce fait, la prédiction d'un gène ne se limite plus à la recherche des bons triplets « start » et « stop », puisqu'il faut également déterminer les frontières entre exons et introns.
Une méthode consiste alors à combiner les résultats fournis par des modèles de Markov, qui estiment la probabilité pour une région de la séquence d'être codante, et la recherche des motifs flous connus pour correspondre aux frontières intron-exon. Quelles que soient la nature du génome et l'efficacité des algorithmes de recherche de gènes, leurs résultats restent toutefois des prédictions, qui ne peuvent être validées qu'à travers des démarches expérimentales.

[1] http://cgg.ebi.ac.uk/services/cogent/
[2] http://genolist.pasteur.fr/SubtiList/
[3] www.ebi.ac.uk/embl/index.html
[4] www.expasy.org/sprot/

NOTES
* Les protéines, formées d'acides aminés, sont, avec les glucides, les lipides et les acides nucléiques, l'un des quatre matériaux de base de tout organisme vivant.
* Un ribosome est un assemblage moléculaire responsable de la synthèse des protéines à partir de l'information portée le long d'un gène.

SAVOIR
Sur notre site, www.larecherche.fr, des applications pour identifier soi-même des gènes dans un génome.

 

DOCUMENT   larecherche.fr    LIEN

 
 
 
  MÉMOIRE
 

 

 

 

 

 

 

  MÉMOIRE
Sous titre
Une affaire de plasticité synaptique
        

La mémoire permet d'enregistrer des informations venant d'expériences et d'événements divers, de les conserver et de les restituer. Différents réseaux neuronaux sont impliqués dans différents types de mémorisation. La meilleure connaissance de ces processus améliorent la compréhension de certains troubles mnésiques et ouvrent la voie à des interventions possibles dans l’avenir.
       


Comprendre le fonctionnement de la mémoire
Cinq systèmes interconnectés

La mémoire se compose de cinq systèmes de mémoire impliquant des réseaux neuronaux distincts bien qu’interconnectés :
*         La mémoire de travail (à court terme) est au cœur du réseau.
*         La mémoire sémantique et la mémoire épisodique sont deux systèmes de représentation consciente à long terme.
*         La mémoire procédurale permet des automatismes inconscients.
*         La mémoire perceptive est liée aux sens.
Cet ensemble complexe est indispensable à l’identité, à l’expression, au savoir, aux connaissances, à la réflexion et même à la projection de chacun dans le futur.
La mémoire de travail
La mémoire de travail (ou mémoire à court terme) est en fait la mémoire du présent. Elle permet de retenir des informations pendant quelques secondes, voire quelques dizaines de secondes. Nous la sollicitons en permanence à chaque instant, par exemple pour retenir un numéro de téléphone le temps de le noter. Dans la plupart des cas, les mécanismes neurobiologiques associés à la mémoire de travail ne permettent pas le stockage à long terme de ce type d’informations : leur souvenir est vite oublié. Néanmoins, il existe des interactions entre le système de mémoire de travail et ceux de la mémoire à long terme. Elles permettent la mémorisation de certains événements et, ainsi, de se remémorer des souvenirs anciens face à certaines situations présentes, afin de mieux s’adapter.

7, le nombre magique
Le chiffre 7 serait le "nombre magique" de la mémoire de travail. Il s’agit du nombre d’éléments pouvant être mémorisés simultanément à court terme, avec une marge de plus ou moins deux événements.  En moyenne, nous sommes donc tous capables de retenir pendant quelques secondes entre 5 et 9 items. Par exemple, la suite [7, 9, 6, 4, 0, 9, 2] représente 7 chiffres. Elle peut aussi se lire [796, 409, 2] ce qui n’en représente plus que trois (et laisse la possibilité de retenir quatre autres items). De même, une suite de mots longs et compliqués comme [perroquet, colibri, araignée, diplodocus, chimpanzé, kangourou, ornithorynque] représente 7 mots que l’on peut retenir, bien qu’elle soit composée d’un bien plus grand nombre de lettres.
Divers procédés mnémotechniques utilisent cette propriété de notre cerveau pour élargir les capacités de la mémoire de travail.

La mémoire sémantique
La mémoire sémantique permet l’acquisition de connaissances générales sur soi (son histoire, sa personnalité) et le monde (géographie, politique, actualité, nature, relations sociales ou encore expérience professionnelle). C’est la mémoire du savoir et de la connaissance. Elle concerne des données personnelles accessibles à notre conscience et que l’on peut exprimer.
La mémoire épisodique
La mémoire épisodique est une forme de mémoire explicite. Elle permet de se souvenir de moments passés (événements autobiographiques) et de prévoir le lendemain. En effet, lorsqu’on demande à une personne d’évoquer un souvenir qui s’est déroulé au cours des derniers mois ou de penser aux prochaines vacances afin d’imaginer ce qui va s’y passer, ce sont les mêmes circuits cérébraux qui sont activés. Les détails des souvenirs épisodiques se perdent avec le temps (où, quand et comment l’événement s’est-il passé ?). Les traits communs aux différents événements vécus s’amalgament les uns aux autres pour devenir des connaissances qui ne sont plus liées à un événement particulier. La plupart des souvenirs épisodiques se transforment donc, à terme, en connaissances générales.
La mémoire procédurale
La mémoire procédurale est la mémoire des automatismes. Elle permet de conduire, de marcher, de faire du vélo ou du ski sans avoir à réapprendre à chaque fois. Cette mémoire est particulièrement sollicitée chez les artistes ou encore les sportifs pour acquérir des procédures parfaites et atteindre l’excellence. Ces processus sont effectués de façon implicite, c’est à dire inconsciente. La personne ne peut pas vraiment expliquer comment elle procède, pourquoi elle tient en équilibre sur ses skis ou descend sans tomber. Les mouvements se font sans contrôle conscient et les circuits neuronaux sont automatisés.
La mémoire perceptive
La mémoire perceptive dépend des modalités sensorielles, notamment de la vue pour l’espèce humaine. Cette mémoire fonctionne beaucoup à l’insu de l’individu. Elle permet de retenir des images ou des bruits sans s’en rendre compte. C’est elle qui permet à une personne de rentrer chez elle par habitude, grâce à des repères visuels. Cette mémoire permet de se souvenir des visages, des voix, des lieux.



Inserm
34 k abonnés
La mémoire expliquée aux enfants

La mémoire fonctionne en réseaux

Du point de vue neurologique, il n’existe pas "un" centre de la mémoire dans le cerveau. Les différents systèmes de mémoire mettent en jeu des réseaux neuronaux distincts, observables par imagerie médicale au cours de tâches de mémorisation ou de récupération d’informations diverses. Ces réseaux sont néanmoins interconnectés et fonctionnent en étroite collaboration : un même événement peut avoir des contenus sémantique et épisodique et une même information peut être représentée sous forme explicite et implicite.
La mémoire procédurale recrute des réseaux neuronaux sous-corticaux et dans le cervelet.
La mémoire sémantique implique des réseaux neuronaux disséminés dans des régions très étendues ainsi que dans les lobes temporaux, notamment dans leurs parties les plus antérieures.
La mémoire épisodique fait appel à des réseaux neuronaux dans l’hippocampe
hippocampe
Structure du cerveau impliquée dans les processus de mémorisation et de navigation spatiale.
et plus largement dans la face interne des lobes temporaux.
Enfin, la mémoire perceptive recrute des réseaux neuronaux dans différentes régions corticales, à proximité des aires sensorielles.
Des souvenirs multiples naissent les raisonnements
Les mémoires s’appuient les unes sur les autres ! Si vous savez qu'un 4x4 est une voiture, vous pouvez dire qu'un 4X4 a des freins, même si personne ne vous l’a dit et que vous ne les avez jamais vus. Vous déduisez cela du fait que toutes les voitures ont des freins. Ce type de raisonnement utile dans la vie quotidienne se fait essentiellement à partir des connaissances stockées en mémoire. Ainsi, plus les connaissances mémorisées sont importantes, plus il est facile de faire des analogies.
Encodage et stockage de l’information, une affaire de plasticité synaptique

Les processus de stockage sont difficiles à observer par imagerie cérébrale car ils relèvent de mécanismes de consolidation qui s’inscrivent dans la durée. Néanmoins, l’hippocampe semble jouer un rôle central dans le stockage temporaire et plus durable des informations explicites, en lien avec différentes structures corticales.
La mémorisation résulte d’une modification des connexions entre les neurones d’un système de mémoire : on parle de " plasticité synaptique " (les synapses
synapses
Zone de communication entre deux neurones.
étant les points de contacts entre les neurones).
Lorsqu’une information parvient à un neurone, des protéines sont produites et acheminées vers les synapses afin de les renforcer ou d’en créer de nouvelles. Cela produit un réseau spécifique de neurones associé au souvenir qui se grave dans le cortex. Chaque souvenir correspond donc à une configuration unique d’activité spatio-temporelle de neurones interconnectés. Les représentations finissent par être réparties au sein de vastes réseaux de neurones d’une extrême complexité.
L’activation régulière et répétée de ces réseaux permettrait dans un second temps de renforcer ou de réduire ces connexions, avec pour conséquence de consolider le souvenir ou au contraire de l’oublier. Il est important de préciser que l’oubli est associé au bon fonctionnement de la mémoire en dehors de cas pathologiques.
Des travaux suggèrent le rôle d’une molécule appelée PKM zêta dans le maintien de la mémoire à long terme. Chez l’animal, elle permet d’entretenir les molécules modifiées pendant l’encodage et d’empêcher qu’elles ne se dégradent avec le temps, consolidant ainsi les réseaux associés aux souvenirs.
La libération de neurotransmetteurs
neurotransmetteurs
Petite molécule qui assure la transmission des messages d'un neurone à l'autre, au niveau des synapses.
, notamment celle de glutamate
glutamate
Neurotransmetteur excitateur le plus répandu dans le système nerveux central.
et de NMDA, ainsi que l’expression d’une protéine qui augmente la libération de glutamate, la syntaxine,  sont associées à la plasticité synaptique.  Sur le plan morphologique, cette plasticité est associée à des remaniements des réseaux neuronaux : changement de forme et de taille des synapses, transformation de synapses silencieuses en synapses actives, croissance de nouvelles synapses.
Au cours du vieillissement, la plasticité des synapses diminue et les changements de connexions sont plus éphémères, pouvant expliquer des difficultés croissantes à retenir des informations. Par ailleurs, dans les rares formes familiales de la maladie d’Alzheimer, des mutations sont associées à des défauts de plasticité des synapses qui pourraient expliquer, dans ce cas, les troubles majeurs de mémoire.
Le sommeil consolide la mémoire
Une leçon s’apprend mieux le soir avant de dormir, c’est un fait ! Des expériences de rappel d’informations montrent que le fait de dormir améliore la mémorisation, et ce d’autant plus que la durée du sommeil est longue. A l’inverse, des privations de sommeil (moins de quatre ou cinq heures par nuit) sont associées à des troubles de la mémoire et des difficultés d’apprentissage. Par ailleurs, le fait de stimuler électriquement le cerveau (stimulations de 0,75 Hz) pendant la phase de sommeil lent (caractérisée par l’enregistrement d’ondes corticales lentes à l’encéphalogramme) améliore les capacités de mémorisation d’une liste de mots.
Plusieurs hypothèses pourraient expliquer ce phénomène : Pendant le sommeil, l’hippocampe est au repos et cela éviterait des interférences avec d’autres informations au moment de l’encodage du souvenir. Il se pourrait aussi que le sommeil exerce un tri, débarrassant les souvenirs de leur composante émotionnelle pour ne retenir que l’informationnelle, facilitant ainsi l’encodage.
Consulter le dossier Sommeil
La réserve cognitive, soutien de la mémoire
Les chercheurs découvrent progressivement des facteurs qui accroissent les capacités de mémorisation et semblent stabiliser les souvenirs dans le temps. C’est le cas de la réserve cognitive : un phénomène associé à des connections fonctionnelles entre les neurones extrêmement nombreuses, résultant des apprentissages, d’une stimulation intellectuelle tout au long de la vie ou encore des relations sociales épanouies.
A ce jour les chercheurs ne savent pas précisément quels ingrédients éducationnels et sociaux participent précisément à la constitution de cette réserve cognitive. Des études menées chez les rongeurs montrent cependant que le séjour d'animaux dans des environnements complexes (dits " enrichis ") améliore leur capacité d'apprentissage et de mémoire. D’autres travaux, conduits chez l’Homme, indiquent que les personnes qui ont un haut degré d’éducation, développent les symptômes de la maladie d’Alzheimer plus tardivement que les personnes qui n’ont pas fait d’études. Ces résultats, issus de recherches en épidémiologie portant sur de très grands nombres de sujets, s’expliqueraient par la capacité du cerveau à compenser les dégénérescences neuronales liées à la maladie grâce à la mobilisation de circuits alternatifs, du fait d’un meilleur réseau de connexions entre les neurones chez les personnes qui ont un niveau d’éducation élevé.
D’autres facteurs contribuent à la consolidation de la mémoire sans que l’on en connaisse parfaitement les mécanismes : le sommeil (voir plus haut), l’activité physique ou encore une bonne santé cardiovasculaire. De façon générale une bonne hygiène de vie (sommeil, alimentation, activité physique) contribue à de bonnes capacités de mémorisation.
Les multiples troubles de la mémoire
Les troubles de la mémoire altèrent principalement la capacité à mémoriser un fait nouveau, à retrouver une information, ou les deux.
Les causes possibles
Certaines situations entrainent des incapacités sévères et des amnésies durables. Les causes possibles sont :
*         un traumatisme physique entrainant des lésions cérébrales,
*         un accident vasculaire cérébral hémorragique ou ischémique,
*         une tumeur du cerveau
*         ou encore une dégénérescence neuronale comme la maladie d’Alzheimer.
Dans d’autres cas, les troubles sont moins sévères et le plus souvent réversibles. Les causes possibles sont :
*         des maladies mentales comme la dépression,
*         le stress et l’anxiété ou la fatigue,
*         un événement traumatisant (deuil),
*         des effets indésirables de médicaments comme des somnifères, des anxiolytiques (d’autant plus fréquent que la personne est âgée),
*         l’usage de drogues.
Il existe aussi probablement des origines biologiques comme un déficit en certains neuromédiateurs ou une faible connectivité entre les réseaux cérébraux.
Une multitude de troubles
Les manifestations des troubles de la mémoire sont extrêmement variables selon l’origine du trouble et la localisation de la zone touchée. Les mécanismes sont éminemment complexes.


Les travaux montrent par exemple que des patients atteints d’une démence sémantique, qui oublient des mots ou des informations, perdent également des souvenirs anciens alors qu’ils continuent à mémoriser de nouveaux souvenirs épisodiques (souvenirs " au jour le jour "). Ces troubles sont associés à une atrophie des lobes temporaux.
Chez d’autres patients présentant des troubles de la mémoire épisodique, les souvenirs anciens qui datent de l’adolescence sont épargnés plus longtemps que les souvenirs récents. C’est le cas chez les personnes souffrant de la maladie d’Alzheimer.
Les dégénérescences neuronales qui surviennent dans les maladies de Parkinson ou de Huntington provoquent  d’autres types de déficiences, affectant notamment la mémoire procédurale avec la perte de certains automatismes.
Certaines personnes peuvent aussi présenter des troubles de la mémoire du travail, liées à des lésions du lobe frontal. L’individu a alors du mal à se concentrer et à faire deux taches en même temps.
Il existe aussi des troubles de la mémoire sévères mais transitoires, comme dans l’ictus amnésique idiopathique

idiopathique
Qui existe par soi-même, indépendamment d’une autre maladie.
qui survient le plus souvent entre 50 et 70 ans. Il s’agit d’une amnésie soudaine et massive, qui dure environ six à huit heures, puis le patient recouvre sa mémoire. Pendant la phase aigue, le patient est incapable de se souvenir de ce qu’il vient de faire, sa mémoire épisodique est annihilée alors que sa mémoire sémantique est intacte : il peut répondre à des questions de vocabulaire et évoquer des connaissances générales.
A l’inverse, certaines personnes peuvent être atteintes d’hypermnésie autobiographique. Il s’agit d’une pathologie très rare qui se caractérise par des capacités de mémorisation exceptionnelles des détails d’événements personnels ou de l’actualité, survenus parfois plusieurs années avant. Il s’agit d’une pathologie de l’abstraction et de la généralisation du souvenir avec absence de tri, de synthèse et d’oubli de détails.
L’état de stress post-traumatique : une distorsion de la mémoire

L’état de stress post-traumatique survient chez une personne victime ou témoin impuissant d’un événement traumatique. Elle est ensuite hantée durablement par cet événement. Ce phénomène est lié à une distorsion profonde de l’encodage des événements. Le souvenir est mémorisé à long terme mais de façon biaisée, avec une amnésie de certains aspects et une hypermnésie d’autres détails qui harcèlent le sujet. Contrairement à un souvenir normal, il persiste au cours du temps sans s’édulcorer ni perdre de sa spécificité. Il s’impose à la victime face à des événements déclencheurs qui lui rappellent la scène. Cette distorsion de l’encodage est associée à une décharge de glucocorticoïdes, hormone du stress, dans l’hippocampe au moment de l’événement.
Les enjeux de la recherche

La mémoire et ses troubles donnent lieu à de nombreuses recherches qui font appel à des expertises variées dans un cadre pluridisciplinaire : génétique, neurobiologie, neuropsychologie, électrophysiologie, imagerie fonctionnelle, épidémiologie, différentes disciplines médicales (neurologie, psychiatrie…), mais aussi sciences humaines et sociales.
L’imagerie fonctionnelle est très informative puisqu’elle permet de savoir quelles zones du cerveau s’activent pendant différentes taches de mémorisation et de restitution simples ou complexes (réciter une liste de mots, évoquer un souvenir précis dans le détail…). En parallèle les chercheurs étudient le cerveau " au repos " afin d’observer les réseaux cérébraux impliqués dans les pensées internes et leurs interconnexions en dehors d’un effort de mémorisation. Des travaux ont montré qu’il est altéré notamment chez les patients atteints de la maladie d’Alzheimer.

L’optogénétique
optogénétique
Technique alliant génie génétique et optique pour contrôler des cellules par la lumière.

permet par ailleurs de mieux comprendre l’implication de certains neurones dans ces réseaux sur des modèles animaux. Cette technique qui associe génie génétique et optique permet " d’allumer " et " d’éteindre " des neurones sur commande et d’en observer l’effet sur la mémorisation, le stockage et la restitution des informations. Il devient donc possible de manipuler la mémoire et l’oubli expérimentalement pendant des tâches de mémorisation, pendant le sommeil, au repos, en réactivant ou en effaçant des souvenirs, ou encore en agissant sur la molécule PKM zêta qui serait responsable du maintien de la mémoire à long terme. Menés aux niveaux cellulaire et moléculaire, ces travaux ouvrent la voie à des perspectives thérapeutiques, notamment pour les victimes de stress post-traumatique.
Les sciences humaines et sociales, comme l’histoire et la sociologie, s’intéressent à la mémoire collective, à comment celle-ci se construit progressivement pour conférer une identité à une communauté. Ces études sont rapprochées de celles menées en psychologie et en neurosciences, cette fois-ci au plan individuel, pour mettre en lumière les mécanismes à l’origine du maintien ou de l’oubli de certains événements.

Programme « 13-Novembre »
Comment le souvenir traumatique des attentats du 13 novembre 2015 évolue-t-il dans les mémoires individuelles et la mémoire collective ? Comment ces mémoires individuelles se nourrissent-elles de la mémoire collective, et inversement ? Peut-on prédire, par l'étude des marqueurs cérébraux, quelles victimes développeront un état de stress post-traumatique, et lesquelles se remettront plus facilement ? Ce sont quelques-unes des questions auxquelles tentera de répondre l'ambitieux programme « 13-Novembre », porté par le CNRS et l'Inserm, avec la collaboration de nombreux partenaires. Codirigé par l'historien Denis Peschanski et le neuropsychologue Francis Eustache, ce programme de recherche transdisciplinaire est fondé sur le recueil et l'analyse de témoignages de 1 000 personnes volontaires interrogées à quatre reprises en dix ans.

 

  DOCUMENT   larousse.fr    LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ] - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales / Confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google