ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

LE SANG

 

 

 

 

 

 

 

sang
(latin sanguis, -inis)

Consulter aussi dans le dictionnaire : sang
Cet article fait partie du dossier consacré à la nutrition.

Liquide rouge qui circule dans les artères, les veines et les capillaires sous l'impulsion du cœur, et qui irrigue tous les tissus de l'organisme, auxquels il apporte les éléments nutritifs (glucose, par exemple) et l'oxygène, et dont il recueille les déchets.
Le sang est véhiculé par l'appareil circulatoire jusqu'aux tissus, où il remplit des fonctions essentielles ; en mouvement permanent, il représente l'élément de liaison entre tous les tissus.

Grâce à sa composition complexe et à sa circulation rapide, le sang, en irriguant tous les tissus, assure de multiples fonctions. Il permet notamment, par l'intermédiaire du réseau capillaire interposé entre la circulation artérielle et la circulation veineuse, le transport des gaz (oxygène, monoxyde d'azote et gaz carbonique), celui de substances nutritives (glucides, lipides, protides), celui des éléments nécessaires aux défenses de l'organisme contre les bactéries, parasites et virus (anticorps, éosinophiles, lymphocytes, monocytes, polynucléaires neutrophiles).
La circulation sanguine est assurée par les contractions du muscle cardiaque. Celui-ci envoie à chaque contraction environ la moitié du sang vers les poumons, où le gaz carbonique est évacué dans l'air expiré, alors que l'oxygène est absorbé par les globules rouges. L'autre partie du sang est envoyée par l'aorte vers les différents tissus, d'où il revient par les veines caves.

COMPOSITION DU SANG

Le volume sanguin est constitué par des cellules, pour près de sa moitié (surtout des hématies, encore appelées globules rouges ; leucocytes, ou globules blancs ; thrombocytes, ou plaquettes), et par le plasma.

LES ÉLÉMENTS FIGURÉS DU SANG

Les hématies contiennent essentiellement l'hémoglobine, pigment dont le rôle fondamental est de transporter l'oxygène des poumons vers les tissus. L'oxygène y est alors relâché et les globules rouges se chargent en retour de gaz carbonique, produit de déchet du métabolisme cellulaire, qu'ils transportent par le système veineux jusqu'aux poumons, où il est éliminé dans l'air expiré.

        Les leucocytes comprennent différents types cellulaires : les polynucléaires neutrophiles et les monocytes, qui jouent un rôle essentiel dans la défense non spécifique contre les infections bactériennes, les champignons et les parasites ; les lymphocytes, supports cellulaires de l'immunité spécifique ; les polynucléaires éosinophiles, qui jouent un rôle dans l’allergie et la défense anti-parasitaire ; les polynucléaires basophiles, qui jouent un rôle dans l'inflammation.

       
Les plaquettes jouent un rôle essentiel, avec les facteurs de coagulation, dans la formation du caillot sanguin et donc dans l'hémostase (arrêt des hémorragies).
Le plasma est un liquide jaune paille, composé à 95 % d'une eau légèrement salée (9 ‰) et de nombreux autres éléments en quantité variable, dont des éléments nutritifs, des déchets et des protéines. Ses propriétés physicochimiques sont remarquablement constantes, en particulier son pH (degré d'acidité), à 7,42, stabilisé par des substances tampons, et sa concentration en divers ions (sodium, potassium, chlore, phosphate, etc.), dont la constance dépend d'une régulation faisant intervenir les poumons, les reins et diverses hormones.

LES PRINCIPAUX CONSTITUANTS DU PLASMA SANGUIN
• Les éléments nutritifs du plasma sont les sucres, notamment le glucose, les graisses (cholestérol, triglycérides, acides gras), les acides aminés, les sels minéraux et les vitamines. Absorbés par voie intestinale, ces éléments nutritifs sont transportés vers les tissus ou un lieu de stockage comme le foie, d'où ils seront libérés selon les besoins de l'organisme.

• Les déchets du plasma sont principalement l'urée et la bilirubine. L'urée, produit final de dégradation des substances azotées, est transportée par le plasma vers les reins, où elle est éliminée dans les urines ; son taux est élevé en cas d'insuffisance du fonctionnement rénal. La bilirubine provient de l'hémoglobine et résulte de la destruction physiologique des globules rouges par les macrophages ; la bilirubine normale du sang n'est pas encore passée par le foie et est dite « libre » (par opposition à la bilirubine « conjuguée », qui résulte de sa transformation chimique dans le foie et est excrétée dans la bile). Un excès de bilirubine dans le plasma s'observe en cas d'hyperdestruction des globules rouges ou en cas de maladie hépatique.

• Les protéines du plasma sont extrêmement nombreuses. Ce sont en particulier toutes les protéines de la coagulation, dont le fibrinogène (un plasma dont la fibrine a été éliminée prend le nom de sérum) ; l'albumine, protéine quantitativement la plus importante du plasma à l'état normal, qui joue un rôle essentiel de transport d'hormones et de vitamines, mais aussi de médicaments  ; les alphaglobulines, qui comportent diverses protéines (alpha-1-antitrypsine, par exemple, dont le déficit est responsable de troubles respiratoires) ayant une activité inhibitrice d'enzyme protéolytique (destruction sélective des protéines) ; les alpha-2-globulines, qui comprennent différentes protéines dont le taux s'élève en cas d'inflammation ; les bêtaglobulines, qui comprennent des anticorps (immunoglobulines) mais aussi d'autres protéines comme la transferrine et le complément ; les gammaglobulines, qui sont constituées exclusivement d'immunoglobulines. Les protéines du plasma comprennent, en outre, les hormones et certains facteurs de croissance, messagers chimiques transportés par le sang pour réguler la production des diverses cellules de l'organisme (érythropoïétine, par exemple, qui stimule la synthèse des globules rouges par la moelle osseuse).
La grande taille des protéines les empêche de passer du sang vers les tissus et permet au plasma de retenir l'eau. Ce mécanisme, appelé pression oncotique, tend à maintenir constant le volume sanguin.

LES FONCTIONS DU SANG
La première est le transport des gaz respiratoires, qui assure les échanges entre les poumons et les tissus : le sang apporte l'oxygène nécessaire à leur fonctionnement et emporte le dioxyde de carbone, déchet du métabolisme tissulaire, afin qu'il soit éliminé. (→ respiration.)
Le sang apporte aux cellules les nutriments issus de la digestion et emporte les déchets (urée, électrolytes, etc.) du métabolisme jusqu’au foie et aux reins, qui assurent leur élimination. Il joue également un rôle dans la thermorégulation. (→ métabolisme.)
Le sang participe à la défense immunitaire de l'organisme, et il dispose de plusieurs mécanismes pour lutter contre le développement de micro-organismes (bactéries, virus, parasites). Cette fonction, qui repose essentiellement sur les globules blancs, consiste en des réactions immunes spécifiques de l'antigène et des réactions non spécifiques. (→ immunité.)
Sa fonction tampon permet au sang, en relation avec les poumons et les reins, de participer, grâce aux différents sels qu'il contient (tels les bicarbonates), au maintien de l'équilibre acido-basique du milieu intérieur. (→ homéostasie.)
La fonction d'hémostase et de coagulation sanguine intervient pour arrêter tout saignement, qu'il soit interne ou externe : au cours d'une première étape, dite « hémostase primaire », entrent en jeu les plaquettes ; la seconde étape, la coagulation proprement dite, correspond à l'activation de nombreux facteurs plasmatiques solubles (appelés facteurs de la coagulation) aboutissant à la production de fibrine pour obtenir un caillot insoluble. (→ coagulation.)

LES ANALYSES DU SANG
Elles permettent d'obtenir des informations sur sa composition en globules, en protéines, en antigènes, en anticorps et en gaz. Il existe 3 principaux types d'analyses sanguines.
Le sang est recueilli dans une veine du pli du coude à l'aide d'une seringue après pose d'un garrot au-dessus du point de ponction. Dans certains cas, lorsque quelques gouttes suffisent, on les prélève en piquant le bout du doigt. Les résultats des tests sont comparés à des normes standards qui peuvent varier en fonction de l'âge et du sexe du patient, mais aussi en fonction du laboratoire, selon la méthode employée.
Les examens hématologiques, dont les plus importants sont l'hémogramme et les tests de coagulation (temps de saignement, temps de coagulation, taux de prothrombine, temps de céphaline activée, numération des plaquettes), permettent l'étude des composants du sang (forme, nombre, taille des globules) et des facteurs de la coagulation.
Les examens biochimiques étudient les différentes substances chimiques du plasma (sodium, urée, vitamines, etc.). Les protéines du sérum sanguin peuvent être étudiées par l'électrophorèse des protides.
Les examens microbiologiques, et notamment l'hémoculture, consistent à rechercher dans le sang différents micro-organismes (antigènes, bactéries, champignons microscopiques, virus) ainsi que les anticorps qui se sont formés contre eux.

LES MALADIES DU SANG
Le sang est le reflet de nombreuses pathologies qui affectent soit la moelle osseuse (origine centrale), soit, directement, les cellules sanguines circulantes (origine périphérique). Toutes les maladies se traduisent soit par une diminution des cellules sanguines normales, ou cytopénie – dans le cas des hématies, on parle d'anémie, et dans celui des plaquettes, de thrombocytopénie –, soit par une augmentation de cellules normales – polyglobulie, si ce sont des hématies – ou anormales, comme dans les leucémies.
Les anémies, anomalies les plus fréquentes, sont caractérisées par une diminution de l'hémoglobine, accompagnée ou non d'une réduction du nombre des hématies circulantes. Leurs causes sont multiples : manque de fer et de certaines vitamines (anémies carentielles), moelle osseuse déficiente (aplasie médullaire) en relation avec une cause infectieuse ou toxique, ou avec une prolifération anarchique de cellules cancéreuses, qui « étouffent » progressivement les cellules souches normales (leucémies).

Certaines maladies de la moelle qui sont mortelles nécessitent le recours à une greffe ; dans l'attente d'un donneur compatible, le seul traitement substitutif repose sur les transfusions sanguines.
Dans certaines régions du monde (Bassin méditerranéen, Afrique), on rencontre fréquemment des anémies (dites hémolytiques) secondaires à une anomalie héréditaire de l'hémoglobine (thalassémie, drépanocytose, etc.), qui va de pair avec un raccourcissement important de la durée de vie des hématies. Dans certaines situations pathologiques acquises, des auto-anticorps, spécifiques d'antigènes présents sur les hématies ou les plaquettes, peuvent être à l'origine de cytopénies auto-immunes comme la thrombopénie.
Chacun des composants du sang peut présenter différentes anomalies.

Les maladies touchant les hématies peuvent résulter de déficits, nutritionnels ou par malabsorption, principalement en fer (anémie ferriprive), acide folique (anémie mégaloblastique) et vitamine B12 (maladie de Biermer), ou d'anomalies génétiques (thalassémie et drépanocytose, par exemple), qui peuvent être dominantes (il suffit que le gène déficient soit reçu de l'un des parents pour que l'enfant développe la maladie) ou récessives (ne se développant que si le gène responsable est reçu du père et de la mère), ou encore liées au chromosome X (chromosome sexuel). Elles peuvent encore découler de mutations acquises aboutissant à une prolifération anormale (polyglobulie) ou d'infections parasitaires (destruction des globules rouges en cas de paludisme, par exemple).
Les maladies touchant les leucocytes sont avant tout les leucémies, affections malignes de la moelle osseuse entraînant une production de globules blancs anormaux et la destruction de la moelle saine. Par ailleurs, les maladies infectieuses du sang peuvent être favorisées par un manque de polynucléaires neutrophiles et de monocytes (infections bactériennes) ou par un déficit en lymphocytes (infections virales et mycosiques).
Les maladies retentissant sur la composition du plasma résultent d'anomalies de la synthèse ou du catabolisme des composants génétiques de celui-ci (en particulier anomalies des facteurs de la coagulation, responsables d'hémophilie) ou sont acquises (synthèse d'une immunoglobuline anormale, responsable de myélome multiple ou de maladie de Waldenström). Les affections retentissant le plus sur la composition du plasma sont celles du foie (cirrhose) et du rein (syndrome néphrotique du diabète). Ainsi, la diminution de la production d'albumine par le foie ou la perte excessive d'albumine par le rein peuvent entraîner une carence en albumine associée à des œdèmes ; l'insuffisance rénale fonctionnelle accroît le taux d'urée, de créatinine et de potassium dans le plasma.

LE PRÉLÈVEMENT DE SANG
Lors d'un prélèvement de sang, afin d'éviter la formation d'un caillot – ce qui fournirait du sérum – et ainsi permettre une analyse, il faut ajouter un anticoagulant capable d'inhiber de façon permanente la coagulation. Le sang anticoagulé peut être conservé à 4 °C pendant 24 h. Les cellules sont isolables par centrifugation (technique de séparation des cellules et du plasma). Les progrès des méthodes microscopiques ont permis à la science du sang de prendre son essor.
Le sang peut être prélevé chez un donneur volontaire sain pour être utilisé en transfusion sanguine.
Voir : hémopathie, leucocyte, lymphocyte, monocyte, plaquette, plasma, polynucléaire.

 

DOCUMENT   larousse.fr    LIEN

 
 
 
 

L'ADN : DÉCHIFFRER POUR MIEUX COMPRENDRE LE VIVANT

 

 

 

 

 

 

 

L'ADN : DÉCHIFFRER POUR MIEUX COMPRENDRE LE VIVANT


L'émergence d'outils et de disciplines


© CEA
La connaissance de l'ADN et de son fonctionnement a fortement progressé ces dernières années grâce aux progrès technologiques.

Publié le 25 janvier 2018

L'évolution des technologies a été fulgurante. Dans les années 1990, il a fallu 13 ans pour séquencer les 3,3 milliards de bases du génome humain alors qu'aujourd'hui, une vingtaine de séquenceurs utilisés en simultané permettent de le faire en 15 minutes. Rapidité, faible coût et surtout faible quantité d'ADN requise ouvrent le champ à de nouvelles applications, notamment dans l'épigénétique et le diagnostic médical.

LE SÉQUENÇAGE
Des révolutions technologiques
En 40 ans, le séquençage a connu de vraies révolutions technologiques grâce aux avancées en physique, chimie et aux nanotechnologies. L'activité, coûteuse à ses débuts, a développé une organisation de type industriel et optimise les rendements grâce à des séquenceurs automatiques. Les dépôts d'échantillons se faisaient à la main sur les premiers séquenceurs à gel. Aujourd'hui, un séquenceur (destiné à analyser des génomes autres qu'humains) est intégré dans une clef USB et s'acquiert pour moins de 1 000 euros. La première technique largement utilisée dès 1977 a été la méthode Sanger, du nom du double prix Nobel de chimie qui l'a mise au point. À partir de 2005, apparaissent de nouvelles technologies de séquençage dites de 2e génération, tel que le pyroséquençage. Des millions de molécules, toutes issues du même échantillon, sont traitées en même temps ; c'est l'heure du séquençage haut débit ! Bien qu'elles aient toutes des spécificités très différentes, trois phases les caractérisent. La première, la préparation d'une collection d'ADN d'intérêt. La deuxième : l'amplification de l'ensemble des fragments afin de générer un signal suffisant pour que le séquenceur le détecte. Et enfin la phase de séquençage elle-même : pendant la synthèse du brin complémentaire, un signal est généré à chaque fois qu'un nouveau nucléotide est incorporé. Inconvénient : les séquences sont plus courtes et le taux d'erreur plus élevé que précédemment ; ce problème est aujourd'hui résolu sur les séquenceurs de dernière génération.
Les années 2010 voient se développer de nouvelles plateformes, dites de 3e  génération. Ces appareils sont si sensibles qu’ils sont capables de séquencer une seule molécule d’ADN en quelques dizaines de minutes ! La dernière innovation présente un avantage majeur : pas besoin de répliquer l'ADN ni d'utiliser de fluorochromes, substance chimique capable d'émettre de la lumière par fluorescence. Sous la forme d’une puce dotée de nanopores (des canaux qui traversent une membrane), la machine capte directement les signaux électriques de chaque base d'ADN qui traverse le canal et permet de séquencer en un temps record. Cette méthode est pour l’instant réservée à de petits génomes, pas au génome humain.

La course aux génomes

La quête des gènes débute dans les années 1970. Lire la séquence de l’ADN devient indispensable pour les étudier, comprendre leur fonction et déceler les mutations responsables de maladies. Objectif ultime : déchiffrer les quelques 3,3 milliards de bases (3 300 Mb) du génome humain. Le projet est aussi ambitieux et presque aussi fou que celui d’envoyer un homme sur la Lune ! Les chercheurs commencent par de petits génomes. En 1995, le premier séquencé et publié est celui d’Haemophilus influenzae (1,8 Mb), une bactérie responsable de la méningite chez l’enfant. Suivra en 1996 celui d’un génome eucaryote unicellulaire, la levure Saccharomyces cerevisiae (12,5 Mb). Puis ce sera le tour du ver Caenorhabditis elegans (97 Mb) en 1998.

En 30 ans, les séquenceurs ont vu leur capacité augmenter d'un facteur 100 millions !


Quant au projet "Human genome", il démarre officiellement en 1989, pour une durée prévue de 15 ans et un budget global estimé à 3 milliards de dollars. Plus de 20 laboratoires de 7 pays différents sont impliqués. Les deux plus importants sont le Sanger Center (Grande-Bretagne) et le Whitehead Institute (États-Unis). En 1997, la France s'équipe d'une plateforme nationale, le Genoscope, et prend en charge le chromosome 14. La version complète de la séquence du génome humain sera publiée en avril 2003, avec plusieurs années d'avance (les chercheurs la complètent encore aujourd'hui). La course aux génomes continue : en août 2016, la base de données génomique internationale, en libre accès sur le site Gold (Genome On Line Database), faisait état de 13 647 organismes séquencés et publiés.

LA GÉNOMIQUE FONCTIONNELLE

La quête des gènes ressemble souvent à une pêche miraculeuse ! Une fois détectés et annotés, leur fonction reste à vérifier et les conditions de leur expression à découvrir. C'est là que la génomique structurelle atteint ses limites et que la génomique fonctionnelle prend le relais.
Cette dernière dresse un inventaire qualitatif et quantitatif sur deux niveaux : le transcriptome et le protéome. Le premier désigne l’ensemble des transcrits (ARNm) et le deuxième l’ensemble des protéines fabriquées. Alors que le génome est unique pour un organisme donné, il existe autant de transcriptomes et de protéomes que de stades de développement cellulaire ! Grâce aux nouvelles technologies de séquençage, l’étude de l’ensemble des transcrits permet non seulement de réaliser un catalogue des gènes exprimés mais aussi de quantifier l’expression des gènes et de déterminer la structure de chaque transcrit à un moment donné. Une deuxième technologie, les puces à ADN, permet aussi d’étudier le transcriptome par l’observation simultanée de l’expression de plusieurs milliers de gènes dans une cellule ou un tissu donné. L’analyse d’un transcriptome peut, par exemple, indiquer le stade de développement d’un cancer et permettre ainsi d’adapter au mieux le traitement du patient.
LE GÉNOTYPAGE : Le génotypage cherche les différences dans la séquence des génomes d'individus d'une même espèce. Ces différences constituent des " marqueurs génétiques ". Pour les trouver, le génotypage fait appel à trois technologies différentes ; le séquençage, les puces à ADN et la spectrométrie de masse. Les marqueurs potentiellement intéressants sont ceux qui se transmettent au sein d'une famille de la même manière et en même temps que le gène impliqué dans une maladie. Les études génétiques à haut débit consistent à analyser des centaines de milliers de ces marqueurs sur des milliers d'individus afin d'identifier et localiser les gènes prédisposant à des pathologies


LA MÉTAGÉNOMIQUE
Les technologies de séquençage permettent aujourd’hui d’appréhender le génome de tous les organismes d’un même écosystème en même temps ; la génomique fait place à la métagénomique.
Vidéo
Métagénome et santé

<div class="reponse warning"> <p>Pour accéder à toutes les fonctionnalités de ce site, vous devez activer JavaScript. Voici les <a href="http://www.enable-javascript.com/fr/">instructions pour activer JavaScript dans votre navigateur Web</a>.</p> </div>    VOIR DANS LA MÉDIATHÈQUE     

Le projet international  "MetaHIT ”, auquel participe le CEA, a pour objectif d’étudier le génome de l'ensemble des bactéries constituant la flore intestinale humaine. Lourde tâche : le métagénome contient 100 fois plus de gènes que le génome humain et 85 % des bactéries sont encore inconnues. Premier résultat obtenu en mars 2010 : le séquençage de l’ensemble des gènes révèle que chaque individu abrite au moins 170 espèces différentes de bactéries intestinales.
En avril 2011, les chercheurs font une découverte assez inattendue. Ce ne sont pas les 3 signatures bactériennes intestinales identifiées qui sont corrélées à l'origine géographique, à l’âge ou à la masse corporelle des individus mais bien quelques poignées… de gènes bactériens ! La preuve de concept est faite : ces derniers pourront être utilisés comme biomarqueurs pour aider au diagnostic des patients touchés par des maladies comme l’obésité ou la maladie de Crohn. En 2014, une nouvelle approche permet de reconstituer le génome de 238 espèces complètement inconnues. Les chercheurs ont également trouvé plus de 800 relations de dépendance qui permettent de mieux comprendre le fonctionnement global de cet écosystème intestinal.

L'ÉPIGÉNÉTIQUE
Peut-on tout expliquer par la génétique ? Dès 1942, Conrad Waddington souligne l'incapacité de cette discipline à expliquer le développement embryonnaire. Comment, en effet, expliquer la différence entre une cellule du foie et un neurone alors que toutes renferment le même programme ? Ce généticien désigne l'épigénétique comme le lien entre les caractères observables (phénotypes) et l'ensemble des gènes (génotypes).
Comparons l'organisme à une voiture ; la génétique serait l'établi sur lequel sont exposées toutes les pièces mécaniques et l'épigénétique la chaîne d'assemblage des différents éléments. Ainsi, l'épigénétique jouerait les chefs d'orchestre en indiquant pour chaque gène à quel moment et dans quel tissu il doit s'exprimer. Suite à la découverte des premiers mécanismes épigénétiques qui régulent l'expression des gènes, les chercheurs ont appris à « museler » un gène à des fins thérapeutiques.
Première méthode : par modification des protéines sur lesquelles s'enroule l'ADN. Le gène se compacte et devient alors inaccessible à la transcription ; il ne s'exprime plus. Seconde méthode : inactiver directement son ARNm avec des ARN interférence qui bloquent sa traduction. Depuis les années 1990, de nouvelles molécules associées à la régulation épigénétique sont découvertes. L'ensemble de ces molécules, le plus souvent trouvées dans l'ADN non-codant, forme l'épigénome. Complémentaire de la génétique, l'épigénétique donne une vue plus complète de la machinerie cellulaire et révèle une surprenante complexité dans les régulations de l'expression génique. Elle ouvre des perspectives dans la compréhension et le traitement de nombreuses maladies.

CNRGH et GENOSCOPE - Au sein de l'Institut de biologie François Jacob, ces deux services développent des stratégies et thématiques scientifiques distinctes, sur un socle de ressources technologiques communes. Le Centre national de recherche en génomique humaine (CNRGH) est axé sur la génomique humaine et la recherche translationnelle. Les recherches du Genoscope (aussi appelé Centre national de séquençage) portent sur l'exploration et l'exploitation de la biodiversité génomique et biochimique.

LE PROJET TARA
L'expédition « Tara Oceans » a débuté en septembre 2009. Pour explorer la diversité et évaluer la concentration du plancton, 40 000 prélèvements ont été réalisés. Leur analyse permet d'étudier l'effet du réchauffement climatique sur les systèmes planctoniques et coralliens, ses conséquences sur la vie marine et donc la chaîne alimentaire. Elle aidera à mieux comprendre l'origine de la vie sur Terre. Enfin, le plancton représente une ressource de biomolécules potentiellement intéressante pour la chimie verte, l'énergie ou encore la pharmacie. Le Genoscope est chargé de l'analyse génétique des 2 000 échantillons « protistes » et « virus » ! En mai 2016, la goélette est repartie pour l'expédition « Tara Pacific ».

Objectif : Mieux comprendre la biodiversité des récifs coralliens, leur capacité de résistance, d'adaptation et de résilience face aux changements climatiques et à la pollution et dégradations dues à l'Homme. À bord et à terre, les chercheurs continuent leur travail de séquençage pour établir une base de données de tous les échantillons prélevés.

 


 DOCUMENT     cea         LIEN

 

 
 
 
 

Huntington (maladie de)

 

 

 

 

 

 

 

Huntington (maladie de)

Héréditaire, actuellement incurable, la maladie de Huntington est associée à la dégénérescence de neurones d’une partie du cerveau impliqués dans des fonctions motrices, cognitives et comportementales. Si le gène dont l’altération provoque la maladie est connu, les mécanismes qui mènent à cette neurodégénérescence ne sont pas encore élucidés. Cependant, diverses pistes thérapeutiques sont à l’étude.
       
Dossier réalisé en collaboration avec Anne-Catherine Bachoud-Levi, directrice de l’équipe Neuropsychologie interventionnelle (unité Inserm 955) et responsable du Centre national de référence maladie de Huntington à l’hôpital Henri-Mondor, Créteil


Comprendre la maladie de Huntington
La maladie de Huntington est une affection neurodégénérative du système nerveux central
système nerveux central
Composé du cerveau et de la moelle épinière.
,rare et héréditaire. Elle se manifeste par des troubles moteurs, cognitifs et psychiatriques qui s’aggravent progressivement jusqu’à la grabatisation et la détérioration intellectuelle sévère. Le décès survient en moyenne vingt ans après le début des symptômes.
Il s’agit d’une maladie génétique due à la mutation du gène codant pour une protéine nommée huntingtine. Elle se transmet sur un mode autosomique dominant : hériter d’une seule copie mutée du gène de la huntingtine est suffisant pour développer la maladie. Tout individu porteur de la mutation développera obligatoirement la maladie (pénétrance complète), à moins qu’il ne décède avant d’une autre pathologie. Un parent porteur de la mutation a 50% de risque de transmettre la maladie à son enfant.
La maladie débute habituellement entre 30 et 50 ans, avec des extrêmes de 1 à 80 ans. Moins de 10% des cas débutent avant l'âge de 20 ans (formes juvéniles de la maladie).
La prévalence
prévalence
Nombre de cas enregistrés à un temps T.
de la maladie de Huntington est d’environ 5 cas pour 100 000 individus. Hommes et femmes sont touchés de la même façon. En France, elle concerne 18 000 personnes : environ 6 000 ont déjà des symptômes et environ 12 000 sont porteuses du gène muté mais encore asymptomatiques.

Une triade de symptômes moteurs, cognitifs et psychiatriques
Les symptômes de la maladie de Huntington sont nombreux et variés. Ils associent généralement des troubles moteurs, cognitifs et psychiatriques. Le type de manifestations et leur intensité sont variables d’un patient à l’autre.
Le symptôme le plus visible - mais qui n’est pas le plus invalidant - est la chorée. Elle se manifeste par des mouvements brusques et involontaires s'étendant progressivement à tous les muscles. Environ 90% des patients présentent ce symptôme. La chorée peut être augmentée par le stress, les émotions ou encore la concentration. Elle disparait le plus souvent pendant le sommeil.
Les autres symptômes moteurs correspondent à des postures anormales (dystonie), une rigidité musculaire ou encore des mouvements volontaires lents (bradykinésie). Le retentissement peut être important sur les actes de la vie quotidienne : troubles de la mastication, de la déglutition, de l’équilibre, déformations articulaires... Avec le temps, les fonctions motrices des patients se détériorent progressivement jusqu’à l’impossibilité d’effectuer certains mouvements, de se déplacer seul, de se nourrir ou même de communiquer.
Par ailleurs, les fonctions cognitives
fonctions cognitives
Ensemble des processus mentaux qui se rapportent à la fonction de connaissance tels que la mémoire, le langage, le raisonnement, l'apprentissage..., par opposition aux domaines de l'affectivité.
des patients déclinent progressivement jusqu’au stade de démence. Les premières manifestations sont généralement des atteintes des fonctions exécutives
fonctions exécutives
Ensemble de processus cognitifs (raisonnement, planification,  résolution de problèmes…) qui nous permettent de nous adapter au contexte, aux situations nouvelles.
permettant de réaliser des tâches complexes au quotidien (mémoire de travail, attention, planification...). Le patient a du mal à organiser ses activités et ne parvient pas à réaliser deux tâches simultanément. D’autres troubles peuvent apparaitre : troubles du langage, de la perception ou de l’intégration visuelle, de la mémoire... Par ailleurs, il existe un ralentissement du traitement cognitif de l’information qui se manifeste par un allongement du temps de réaction.
Les patients présentent en outre des troubles psychiatriques et comportementaux, précédant souvent les symptômes moteurs. La dépression est le symptôme le plus fréquent et le risque suicidaire est élevé chez ces patients. L’anxiété, ou encore une apathie, amènent le patient à se replier sur lui-même et à refuser toute activité. Cela complique la tâche des aidants qui cherchent justement à le stimuler. Des états psychotiques avec des délires (dans environ 10% des cas), des hallucinations (rares) ou encore des obsessions (plus de 15%) sont parfois observés. L’irritabilité, voire une agressivité menaçante, peuvent altérer les relations sociales. Des traitements symptomatiques peuvent être proposés pour chaque symptôme, imposant à la fois une prise en charge globale et spécifique.
D'autres signes de la maladie de Huntington, fréquents et invalidants, sont moins connus : perte de poids, troubles du sommeil, perte du rythme circadien. La perte de poids est souvent précoce, voire antérieure à l’apparition des autres symptômes, alors même que les apports caloriques sont normaux.
L’atteinte neurologique des patients est évaluée à l’aide de l’échelle UHDRS (Unified Huntington Disease rating Scale), une référence internationale qui évalue les symptômes moteurs, cognitifs, psychiatriques ainsi que l’état fonctionnel des patients.

Des mécanismes encore incompris
La mutation génétique responsable de la maladie de Huntington correspond à une anomalie du nombre de répétitions d’un triplet de nucléotides
nucléotides
Molécule de base de l’ADN et de l’ARN.
(CAG) à l’extrémité du gène de la huntingtine. Plus l’extension est importante et plus le début de la maladie est précoce. En situation normale, on compte 35 copies de ce triplet. Dans les formes juvéniles, le nombre de répétitions dépasse souvent 55 et peut atteindre plus de 100.
Cette mutation provoque une dégénérescence des neurones débutant dans le striatum, partie centrale du cerveau impliquée dans des fonctions motrices, cognitives et comportementales. Les mécanismes qui mènent à cette dégénérescence ne sont pas encore élucidés et le rôle de la huntingtine est toujours à l'étude. Selon certains chercheurs, la huntingtine mutée entrainerait la formation d'agrégats toxiques pour les neurones qui déclencherait leur mort par apoptose
apoptose
Mort cellulaire programmée. Processus d’autodestruction des cellules déclenché par un signal.
. Pour d’autres, c’est l’absence de huntingtine saine qui empêcherait les neurones de fonctionner correctement. Il semble par ailleurs que d’autres mécanismes contrebalancent l’effet délétère de la mutation : plusieurs gènes modificateurs sont en cours d’identification et sont associés à une maladie plus tardive ou à des symptômes moins sévères. Les produits de ces gènes modificateurs sont impliqués dans des mécanismes cellulaires très variés.

Un diagnostic clinique puis génétique
Le diagnostic de la maladie de Huntington repose sur des observations cliniques face à un patient présentant des troubles moteurs, psychiatriques et cognitifs, dans un contexte familial  pouvant évoquer la maladie. Un test génétique (analyse du gène de la huntingtine à partir d’un prélèvement sanguin) permet de confirmer le diagnostic.
Un diagnostic génétique préclinique peut être réalisé chez des personnes appartenant à une famille touchée mais ne présentant pas de symptômes. Ces personnes, potentiellement porteuses de la mutation, peuvent souhaiter connaître leur statut génétique pour plusieurs raisons : lever l’incertitude et planifier l’avenir, informer leurs enfants ou choisir d’en avoir, ou encore participer à la recherche médicale. La réalisation du test est encadrée par un conseil génétique incluant une phase d’information et de suivi par des professionnels (généticiens, neurologues, psychologues, assistantes sociales…). Un temps de réflexion est imposé avant le recueil du consentement éclairé́ et le prélèvement sanguin. En l’absence de traitement préventif et la maladie étant à ce jour incurable, moins de la moitié des personnes qui  entame la démarche iront jusqu’au bout. En cas de résultat positif, un suivi pluridisciplinaire est proposé.

Le diagnostic prénatal et préimplantatoire
Le diagnostic prénatal de la maladie de Huntington consiste à rechercher une mutation du gène de la huntingtine chez un fœtus, au cours de la grossesse. Ce test est réalisé si l’un des parents est porteur de cette anomalie. En cas de résultat positif, le couple peut choisir d’interrompre la grossesse à n’importe quel moment. Ce diagnostic est généralement réalisé́ entre 11 et 13 semaines d'aménorrhée (SA) par biopsie
biopsie
Prélèvement d'un échantillon de tissu, réalisé à des fins d'analyses.
du trophoblaste. Le risque de fausse couche associé est d’environ 1%. Il peut également être réalisé́ par prélèvement de liquide amniotique à partir de 15-16 SA, avec un risque de fausse couche inférieur (0,5%), mais une interruption de grossesse plus tardive en cas de diagnostic défavorable.
Les parents qui ont recours à une fécondation in vitro (FIV) peuvent faire procéder à un diagnostic préimplantatoire, si l’un des parents est porteur de la mutation ou si l’un des grands-parents est atteint par la maladie. La technique consiste alors à rechercher l'anomalie génétique sur les embryons obtenus par FIV, trois jours après la fécondation, et à sélectionner un ou deux embryons sains à transférer dans l'utérus de la mère.

Une prise en charge multidisciplinaire
ll n’existe pas de traitement curatif de la maladie à ce jour. Mais des traitements symptomatiques sont efficaces. L’adhésion du patient aux soins et son maintien dans un environnement stimulant socialement et intellectuellement sont très favorables : ils peuvent permettre de stabiliser son état pendant plusieurs années.
A chaque étape de la maladie, il faut repérer les symptômes et lutter contre leurs effets grâce à l’aide de divers professionnels de santé : médecins, kinésithérapeutes, orthophonistes, psychologues, neurologues, diététicien(ne)s ou encore assistant(e)s sociales.
Des traitements médicamenteux permettent de soulager les troubles psychiatriques (antidépresseurs, thymorégulateurs, anxiolytiques, somnifères, neuroleptiques
neuroleptiques
Médicaments utilisés pour combattre les troubles mentaux.
antipsychotiques…), mais également les mouvements choréiques (stabilisateurs de dopamine
dopamine
Hormone sécrétée par certains neurones dopaminergiques, impliquée dans le contrôle de la motricité, dans la maladie de Parkinson ou encore les addictions.
, neuroleptiques…). Par ailleurs, en cas de perte de poids, il est souvent nécessaire d’augmenter les apports caloriques et ceux en vitamines et en oligoéléments.
La rééducation physique (kinésithérapie, ergothérapie, psychomotricité) et orthophonique permettent de limiter les problèmes de posture et d’équilibre, mais aussi les troubles de la parole ou de la déglutition. Une activité physique régulière comme la marche à pied une heure par jour, ainsi que les activités favorisant l’équilibre, comme le Taï Chi Chuan, le yoga, la gymnastique douce ou la danse, sont recommandées.

Des mesures d’accompagnement dans la vie quotidienne sont indispensables pour répondre à la perte d’autonomie : aides de vie et leur financement, séjours de répit, orientation vers un autre lieu de vie, planification des activités du patient, aides techniques… Un reclassement professionnel est souvent nécessaire en particulier pour les métiers mettant le patient ou des tiers en danger.
Des Centres de compétences maladie de Huntington sont présents partout en France. Ils organisent l’offre de soin en relation avec le Centre national de référence maladie de Huntington situé en région parisienne, à Créteil.

Les enjeux de la recherche

Des médicaments neuroprotecteurs
Si de nombreux essais évaluent la capacité de diverses molécules à protéger les neurones des patients, aucun médicament n’a montré d’efficacité à ce jour. Toutefois, une des molécules en cours d’évaluation clinique, la cystamine, aurait une tendance à la neuroprotection. Elle doit encore faire ses preuves.
Les mécanismes de la maladie de Huntington n’étant pas complètement élucidés, ces travaux progressent à tâtons. Plusieurs hypothèses sont évoquées pour expliquer la mort des neurones associées à cette maladie neurodégénérative : anomalies métaboliques, toxicité, stress oxydant
stress oxydant
Déséquilibre entre la production par l’organisme d’agents oxydants nocifs (radicaux libres, notamment) et celle d’agents antioxydants (comme les vitamines E et C). Il entraîne une inflammation et la survenue de mutations de l’ADN.
, dysfonctionnement mitochondrial... Des chercheurs s’intéressent à la piste d’un dysfonctionnement du métabolisme énergétique et teste l’effet d’un médicament à base de triheptanoïne, un triglycéride, sous forme d’huile à ingérer.

La thérapie cellulaire ou greffe de neurones
Un essai clinique visant à évaluer l’intérêt de la greffe de neurones dans le traitement de la maladie de Huntington (essai MIG-HD) vient de s’achever. Coordonné par le Centre national de référence maladie de Huntington à l’hôpital Henri Mondor (AP-HP, Créteil), en relation avec l’Inserm, cet essai multicentrique international a inclus 45 patients. La technique testée a consisté à implanter dans le striatum des patients des cellules neuronales fœtales qui se différencient en neurones fonctionnels et établissent des connexions avec les neurones résiduels. Une stratégie qui ne permettra pas de guérir de la maladie, mais pourrait stabiliser ou restaurer des fonctions. Les patients ont reçu deux injections de cellules neuronales à quelques mois d’intervalles et ont été suivis pendant 20 à 40 mois. Les résultats ne sont pas encore publiés mais, lors d’un précédent essai conduit sur cinq patients, la greffe avait été bénéfique chez trois patients, entrainant une stabilisation des symptômes moteurs et cognitifs 18 mois après la greffe. Le suivi de l’ensemble des patients est prolongé à vie (POST MIG-HD).
Si les résultats de cette nouvelle étude sont positifs, il faudra envisager l’utilisation de cellules souches plutôt que celle de cellules fœtales : obtenir en quantité suffisante des cellules fœtales prélevées à 7-12 semaines de développement pour 45 patients a nécessité treize ans ! Un délai beaucoup trop long pour une application clinique. En outre, l’utilisation de cellules souches permettra de choisir des cellules immunocompétentes dans des banques, afin d’éviter un rejet de greffe. Un consortium international, Repair-HD, travaille actuellement à la préparation de ces futures cellules souches compatibles.
En savoir plus sur la thérapie cellulaire

La thérapie génique
Les premiers essais de thérapie génique appliqués à la maladie de Huntington ont consisté à faire produire un facteur neurotrophique (CNTF) par des cellules étrangères introduites au sein du cerveau. Il a été établi chez l’animal que ce facteur protège les neurones de la dégénérescence. Des chercheurs Inserm, en collaboration avec l’Ecole polytechnique de Lausanne, ont utilisé des cellules génétiquement modifiées pour produire ce facteur. Ils les ont enfermées dans des capsules et les ont implantées dans le cerveau de singes. Avec ce dispositif, le facteur CNTF peut sortir des capsules, mais pas les cellules. Cela  évite leur diffusion et une réaction immunitaire. Des résultats positifs ont été obtenus, avec une protection des neurones du striatum soumis à un produit entrainant leur dégradation. Ces capsules ont été testées chez six patients à l’hôpital Henri Mondor. Le traitement a été bien toléré, mais la durée de vie des cellules produisant le CNTF s’est avéré limitée dans la moitié des cas. Le suivi des patients à long terme suggère néanmoins une efficacité du CNTF. L’utilisation d’une autre technique d’administration, comme le transfert viral, devra être envisagé pour le confirmer.
En savoir plus sur la thérapie génique

Un traitement curateur ?
D’autres essais de thérapie génique ont démarré au Royaume-Uni, Allemagne et au Canada, visant à bloquer l’expression du gène de la huntingtine mutée (ISIS-HTTRx). Cette approche passe par l’injection de petites séquences d’acides nucléiques qui reconnaissent le gène muté, s’y fixent et empêchent son expression (ARN
ARN
Molécule issue de la transcription d'un gène.
antisens). Elle réduirait drastiquement la charge de protéine huntingtine mutée dans le cerveau. En pratique, des injections ont lieu tous les quinze jours dans le liquide céphalo-rachidien des patients (injection intrathécale au niveau des lombaires), permettant une migration des ARN antisens vers le cerveau. La France est sur les rangs et réfléchit à la possibilité d’utiliser un vecteur viral
vecteur viral
Virus modifié qui sert à apporter un gène thérapeutique aux cellules.
pour produire ces acides nucléiques directement dans le cerveau. Une efficacité validerait l’hypothèse de la toxicité de la huntingtine mutée.

 

  DOCUMENT        inserm        LIEN

 
 
 
 

Un nouveau mécanisme impliqué dans le développement d‘infections bactériennes persistantes

 

 

 

 

 

 

 

Un nouveau mécanisme impliqué dans le développement d‘infections bactériennes persistantes

COMMUNIQUÉ | 04 JANV. 2021 - 17H16 | PAR INSERM (SALLE DE PRESSE)
 
IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE

Les infections bactériennes dites « persistantes » constituent un problème de santé publique majeur. Elles sont associées à des échecs importants des traitements antibiotiques. Des chercheurs de l’Inserm et de l’Université de Rennes 1, en collaboration avec une équipe de recherche basée en Suisse, ont mis en évidence un nouveau mécanisme permettant d’expliquer l’entrée en persistance de la bactérie Staphylococcus aureus, ou staphylocoque doré. Ces travaux sont publiés dans la revue Nature Microbiology.

La persistance désigne la capacité de bactéries à survivre à des doses élevées d’antibiotiques, sans pour autant être résistantes. Elles deviennent persistantes en ralentissant leur croissance, un peu comme si elles entraient en « hibernation » pour se protéger des traitements antibiotiques. La présence de telles bactéries tolérantes aux antibiotiques représente un problème majeur de santé publique. En effet, lorsque les antibiotiques sont arrêtés, certaines d’entre elles se « réveillent » et sont susceptibles de se multiplier à nouveau. Le risque de rechute et d’infections bactériennes chroniques est alors très élevé.
La plupart des mécanismes menant à la formation de la persistance demeurent inconnus. Dans leur étude, les chercheurs de l’Inserm et de l’Université de Rennes 1 au sein du laboratoire « ARN régulateurs bactériens et médecine » se sont intéressés à la bactérie Staphylococcus aureus (le staphylocoque doré).  Celle-ci arrive en tête des pathogènes responsables d’infections nosocomiales (infections contractées à l’hôpital) et est également impliquée dans de nombreuses intoxications alimentaires.  

Lutter contre les infections bactériennes chroniques
Dans leurs travaux, les chercheurs se sont intéressés un ARN non codant des staphylocoques dorés, c’est-à-dire à un ARN non traduit en protéines.
Ils ont montré qu’une fois positionné sur les ribosomes[1] des staphylocoques, cet ARN (désigné sous le nom d’antitoxine SprF1) diminue la synthèse des protéines pendant la croissance de la bactérie (il s’agit du phénomène d’hibernation évoqué plus haut). Ce mécanisme favorise la formation de staphylocoques persistants qui deviennent insensibles aux antibiotiques.

« Nous mettons en évidence un processus moléculaire guidé par l’ARN où l’interaction entre cet ARN SprF1 et le ribosome est impliquée dans la formation de bactéries persistantes aux antibiotiques, elles-mêmes largement impliquées dans les infections staphylococciques chroniques », souligne Brice Felden, le professeur à l’Université de Rennes 1 qui a supervisé ces travaux.  
Ces résultats permettent en outre d’envisager une nouvelle classe d’anti-infectieux ciblant les bactéries persistantes, et donc de nouveaux traitements pour les infections chroniques à staphylocoques dorés. « Forts de ces résultats, nous souhaitons utiliser développer des molécules contre les bactéries persistantes en ciblant l’antitoxine SprF1. Cette stratégie vise ainsi à compléter l’arsenal thérapeutique mis à disposition des cliniciens, qui sont de plus en plus confrontés à des maladies bactériennes chroniques », déclare Marie-Laure Pinel-Marie qui a coordonné ces travaux.
 
Ces résultats ont fait l’objet d’un dépôt de brevet européen.
 
[1] Des particules présentes dans toutes les cellules qui sont les « usines » à fabrication des protéines.

 

   DOCUMENT        inserm        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google