|
|
|
|
|
|
MATHEMATIQUES |
|
|
|
|
Auteur : sylvain Date : 21/02/2012 |
|
|
|
|
MATHEMATIQUES ET RECHERCHE
|
|
|
|
|
|
|
|
BENOIT MANDELBROT |
|
|
|
|
Auteur : sylvain Date : 01/02/2012 |
|
|
|
|
« Benoît Mandelbrot était un visionnaire qui a su trouver des lois et de l'ordre dans des phénomènes d'apparence prodigieusement complexe », souligne Alain Fuchs, président du CNRS. « Il a fondé une vision géométrique de la complexité en développant la théorie des objets fractals, qui a eu des applications pour la synthèse d'image, la description de la turbulence, la finance et bien d'autres domaines encore ».
Benoît Mandelbrot est né en 1924 à Varsovie, en Pologne, dans une famille juive d'origine lithuanienne. Fuyant le nazisme, sa famille se réfugie à Paris en 1936 où il est initié aux mathématiques par deux de ses oncles. C'est le début d'une vocation et d'une carrière brillante et féconde en mathématiques. Reçu à l'École Polytechnique de Paris en 1944, il alterne ensuite des séjours aux États-Unis et en France, où il passe sa thèse en 1952. Il effectue ses recherches au CNRS de 1949 à 1957 puis est employé par la société américaine IBM en 1958 où il travaillera 35 ans. Il terminera sa carrière comme professeur à l'université de Yale.
Inventeur des fractales - ces objets géométriques qui ont la propriété d'être décomposés en fragments dont chacun a la même forme que le tout - ses travaux novateurs permettent une approche totalement nouvelle de certains problèmes grâce à une description géométrique. Il fut aussi un pionnier de l'utilisation de l'informatique comme outil d'expérimentation mathématique. La géométrie fractale dont il est le père fondateur avait pour objectif d'étudier et de classifier des phénomènes naturels que l'on pensait non susceptibles d'une modélisation mathématique, car présentant une très grande complexité à toutes les échelles, comme les flocons de neige, les nuages ou les côtes bretonnes... Ses travaux ont révolutionné notre façon de percevoir la nature et ouvert de nouveaux terrains de recherche à plusieurs branches des mathématiques (systèmes dynamiques, processus aléatoires...). Mais son apport le plus spectaculaire fut sans doute l'élaboration de concepts et d'outils mathématiques qui ont permis de dévoiler des correspondances insoupçonnées entre des parties de la Science aussi diverses que l'astronomie, la turbulence, la physique des matériaux, la géologie, l'hydrologie, la chimie, la médecine, l'économie, le traitement du signal et de l'image ou encore la linguistique. Benoît Mandelbrot a été à l'origine par exemple d'un modèle d'évolution des cours de la bourse basé sur la géométrie fractale.
Pour Guy Métivier, directeur de l'Institut national des sciences mathématiques et de leurs interactions du CNRS : « Benoît Mandelbrot était un esprit inclassable. Si l'« ensemble de Mandelbrot » est devenu l'un des plus fascinants objets des mathématiques et les « cascades de Mandelbrot » le modèle le plus utilisé de turbulence, ce scientifique universel a apporté des contributions profondes aussi bien en mathématiques, qu'en physique, chimie, économie... révélant, grâce à la géométrie fractale, des liens insoupçonnés entre ces disciplines... sans oublier sa critique féroce de l'utilisation en mathématiques financières du modèle de Black et Scholes, de nombreuses années avant que la crise ne lui donne raison ».
Il est l'auteur de nombreuses publications dont Les objets fractals, forme, hasard et dimension (1975) ou La géométrie fractale de la nature (1982), qui auront un grand retentissement, bien au-delà de la communauté scientifique. Scientifique visionnaire, Benoît Mandelbrot a été nommé Chevalier dans l'Ordre National de la Légion d'Honneur en 1989 puis promu Officier en 2006. Il a reçu les plus hautes distinctions internationales dont le prix Wolf en physique en 1993 et le Japan Prize for science and technology of complexity en 2003. |
|
|
|
|
|
|
DOMESTICATION DU BLE |
|
|
|
|
Auteur : sylvain Date : 13/12/2011 |
|
|
|
|
Paris, 15 novembre 2011
Domestication du blé, quand l'évolution des gènes fait bien les choses
A l'origine même de l'agriculture, le blé est, après des millénaires, la première plante cultivée au monde et l'aliment de base du tiers de la population mondiale. Les espèces de blé cultivé, fruits d'une sélection menée par l'homme, présentent un génome* complexe qui associe deux ou trois génomes homologues. Une étude publiée par des chercheurs de l'INRA, du CEA/Genoscope et leurs collègues américains dans la revue Proceedings of the National Academy of Science du 15 novembre 2011, révèle que les différentes copies d'un gène appelé Q, élément majeur de la domestication du blé, contribuent de manière coordonnée et différenciée aux caractères de la domestication. Ces travaux constituent un cas d'école en matière de régulation et d'interaction entre copies dupliquées des gènes au sein d'un organisme qui possède plusieurs génomes.
La plupart des êtres vivants ont deux jeux de chromosomes dans leurs cellules, on les appelle diploïdes. Dans certaines conditions, par exemple suite à des croisements entre espèces, le nombre de chromosomes peut être augmenté par agrégation de plusieurs génomes, on parle alors d'espèces polyploïdes. La majorité des plantes à fleurs dont les plantes cultivées comme le blé ont une origine polyploïde. Ce mécanisme a été très important dans l'évolution, la diversification et la création de variabilité génétique.
Le blé, jamais deux sans trois… génomes
Originaires du Moyen-Orient, les différentes espèces de blé (Triticum et Aegilops) ont subi au cours des siècles des transformations qui les ont fait passer de l'état de plantes sauvages à celui d'espèces cultivées. Actuellement, deux espèces de blé sont principalement cultivées : le blé dur utilisé pour les pâtes et le blé tendre employé pour le pain. Elles ont été générées par des événements de polyploïdisation intervenus suite à des croisements entre espèces ancestrales. Le premier événement implique deux espèces diploïdes présentant 7 paires de chromosomes, Triticum urtatu (génome AA) et une espèce d'Aegilops (génome BB) ; il a eu lieu il y a environ 500 000 ans et a conduit à l'apparition de blés tétraploïdes dont le blé dur, Triticum turgidum (génome AABB, 14 paires de chromosomes). Le second événement a eu lieu au cours de la domestication, il y a environ 9000 ans, entre un blé tétraploïde cultivé et un blé diploïde (Aegilops tauschii, génome DD). Il a donné le blé tendre, Triticum aestivum, qui est hexaploïde (génome AABBDD, 21 paires de chromosomes).
Le gène Q, élément clé de la domestication du blé
Au fil du temps, l'homme a sélectionné des plantes de blé répondant mieux à ses besoins (facilitation de culture, amélioration de l'utilisation…). On a ainsi vu apparaître, lors des premières étapes de la domestication, des populations du blé qui avaient perdu la possibilité, par rapport aux plantes sauvages, de disséminer leurs graines à maturité. Ces blés présentent un épi compact dont la tige centrale ou rachis ne se désarticule pas, favorisant ainsi la récolte. Ces caractères sont contrôlés par le gène Q, un gène majeur de la domestication.
L'évolution du gène Q au service de la domestication du blé
Les chercheurs ont exploré l'organisation, le fonctionnement et l'évolution des différentes copies du gène Q porté par les chromosomes 5 des trois génomes A, D et B du blé tendre (T. aestivum) afin de comprendre leurs participations aux caractères de la domestication.
Les scientifiques ont ainsi mis en évidence que les trois copies du gène agissent ensemble, chacune contribuant aux caractères liés à la domestication de façon directe ou via des processus de régulation liés à l'environnement (on parle d'épigénétique).
Ils ont montré que l'évolution du gène Q varie selon les copies : elle se traduit par une hyperfonctionnalisation d'une copie (5A), par une pseudogénisation de la deuxième copie (5B) qui ne code plus pour une protéine active mais reste fonctionnelle et continue à contribuer aux caractères de domestication, et par une sous-fonctionnalisation de la troisième copie (5D).
L'ensemble des résultats constitue une avancée déterminante dans la compréhension des bases moléculaires et génomiques de la domestication du blé. Il révèle un des rares exemples de mécanisme d'interaction et de partage de fonction entre les copies d'un gène chez une plante polyploïde, en lien avec la morphologie et la domestication du blé.
Plus encore, alors que la domestication et la culture du blé ont été des éléments fondateurs des premières civilisations humaines dans le Croissant Fertile, ce travail apporte une pierre à l'édifice de la compréhension du développement de l'agriculture et de la sédentarisation des premières populations.
Notes :
* Le génome est l'ensemble des chromosomes, et par extension l'ensemble des gènes, portant le patrimoine génétique d'un individu.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
CELLULES SOUCHES |
|
|
|
|
Auteur : sylvain Date : 04/12/2011 |
|
|
|
|
Paris, 2 novembre 2011
Effacer les marques de vieillissement des cellules : c'est possible
L'équipe AVENIR Inserm "Plasticité génomique et vieillissement" dirigée par Jean Marc Lemaitre, chargé de recherche Inserm à l'Institut de génomique fonctionnelle (Inserm/CNRS/Université de Montpellier 1 et 2), vient de parvenir à rajeunir des cellules de donneurs âgés, vieilles de plus de 100 ans. Ces cellules âgées, reprogrammées in vitro en cellules souches pluripotentes (iPSC pour "Induced pluripotent stem cells") ont retrouvé leur jeunesse et les caractéristiques des cellules souches embryonnaires (hESC): elles peuvent se différencier à nouveau en cellules de tous types après une véritable cure de "jouvence". Ces résultats constituent une avancée significative pour la recherche sur les cellules iPSC et une nouvelle étape vers la médecine régénérative.
Les résultats sont publiés dans la revue Genes & Development datée du 1er novembre 2011.
Les cellules souches embryonnaires humaines (hESC) sont des cellules "à tout faire" qui sont indifférenciées. Par leurs divisions, elles assurent la mise en place de toutes les cellules adultes différenciées de l'organisme (neurones, cellules cardiaques, cellules de peau, cellules du foie…cf. figure 1).
Depuis 2007, quelques équipes de recherche dans le monde sont capables de reprogrammer des cellules adultes humaines en cellules souches pluripotentes (iPSC), qui présentent des caractéristiques et un potentiel similaires aux cellules souches embryonnaires humaines (hESC). Cette reprogrammation (cf. figure 1 en rouge), offre la possibilité de reformer tous les types cellulaires de l'organisme en dehors des contraintes éthiques liées à l'utilisation de cellules souches de type embryonnaires.
Jusqu'alors, les résultats de recherches publiés montraient que la sénescence, point ultime du vieillissement cellulaire, restait une limite à l'utilisation de cette technique pour des applications thérapeutiques chez des patients âgés.
Aujourd'hui, Jean Marc Lemaitre, chargé de recherche à l'Inserm et son équipe, viennent de franchir cette limite. Les chercheurs sont parvenus à rajeunir des cellules de donneurs âgés, jusqu'à plus de 100 ans, et ont ainsi démontré la réversibilité du processus du vieillissement cellulaire.
Pour ce faire, ils ont utilisé une stratégie adaptée qui consiste à reprogrammer des cellules, grâce à un "cocktail" spécifique de 6 facteurs génétiques tout en effaçant les marques du vieillissement. Les chercheurs ont montré que les cellules souches iPSC obtenues ont alors la capacité de reformer tous les types cellulaires de l'organisme. Elles possèdent des caractéristiques physiologiques de cellules "jeunes", tant du point de vue de leur capacité proliférative que de leur métabolisme cellulaire.
Un cocktail de 6 facteurs génétiques…
Les chercheurs ont d'abord multiplié des cellules de la peau (fibroblastes) d'un donneur de 74 ans pour atteindre la sénescence caractérisée par l'arrêt de la prolifération des cellules. Ils ont ensuite procédé à la reprogrammation in vitro de ces cellules. Dans cette étude, Jean Marc Lemaitre et son équipe ont d'abord confirmé que cela n'était pas possible avec le lot de 4 facteurs génétiques classiquement utilisé (OCT4, SOX2, C MYC et KLF4) et ont ajouté 2 facteurs supplémentaires (NANOG et LIN28) qui ont permis de franchir cette barrière (cf. figure 2).
Grâce à ce nouveau "cocktail" de 6 facteurs, les cellules sénescentes, reprogrammées en cellules souches pluripotentes iPSC fonctionnelles, réacquièrent les caractéristiques de cellules souches pluripotentes de type embryonnaire.
En détail, elles ont retrouvé leur capacité d'autorenouvellement et leur potentiel de différenciation d'antan, ne conservant aucune trace de leur vieillissement antérieur.
Pour vérifier les caractéristiques "rajeunies" de ces cellules, les chercheurs ont testé le processus inverse. Les cellules iPSC rajeunies ont été à nouveau différenciées en cellules adultes (cf. figure 1) et comparées aux cellules âgées d'origine ainsi qu'à celles obtenues à partir de cellules souches pluripotentes de type embryonnaires (hESC).
"Les marqueurs de l'âge des cellules ont été effacés et les iPSC, que nous avons obtenues peuvent produire des cellules fonctionnelles, de tous types avec une capacité de prolifération et une longévité accrues", explique Jean Marc Lemaitre qui dirige l'équipe AVENIR de l'Inserm.
...testé sur des cellules âgées de plus de 100 ans
Les résultats obtenus ont conduit l'équipe de recherche à tester le cocktail sur des cellules plus âgées de 92, 94, 96 jusqu'à 101 ans. "Notre stratégie a fonctionné sur les cellules de centenaires. L'âge des cellules n'est définitivement pas une barrière à la reprogrammation", conclut-il. "Ces travaux ouvrent la voie à l'utilisation thérapeutique des iPS à terme, en tant que source idéale de cellules adultes tolérées par le système immunitaire, pour réparer des organes ou des tissus chez des patients âgés", ajoute le chercheur.
Ce travail a fait l'objet d'une demande de brevet auprès d'Inserm Transfert.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 ] Précédente - Suivante |
|
|
|
|
|
|