PROPRIOCEPTION

 

   

 

 

 

 

 

    PROPRIOCEPTION, subst. fém.    * Dans l'article "PROPRIOCEPTIF, -IVE,, adj."

PSYCHOPHYSIOL. ,,Qui se rapporte au fonctionnement des propriocepteurs`` (Méd. Biol. t.3 1972). Réflexe proprioceptif. Allons-nous supposer que l'excitation extéroceptive ou proprioceptive a réveillé chez lui [le normal] des «résidus kinesthésiques» qui tiennent lieu de mouvements effectifs? (Merleau-Ponty, Phénoménol. perception, 1945, p.126).Est-ce parce que le labyrinthe nous renseigne sur nos déplacements dans l'espace qu'il est proprioceptif, mais le tact, la vue nous renseignent aussi sur nos déplacements, et leur fonction doit-elle devenir proprioceptive pour cela? (Piéron, Sensation, 1945, p.40).

− Sensibilité proprioceptive. Sensibilité propre aux organes profonds de la vie de relation, os, articulations, muscles, ligaments, par opposition à la sensibilité extéroceptive (tactile) et à la sensibilité intéroceptive (viscérale). Récepteurs de la sensibilité proprioceptive. Un de ces schémas posturaux sans but extérieur, où le corps joue une sorte de monologue moteur avec la conscience de ses attitudes, avec son équilibre ou simplement avec le libre jeu de ses ébats (sensibilité proprioceptive) (Mounier, Traité caract., 1946, p.193).V. intéroceptif ex.
♦ Empl. subst. V. extéroceptif, s.v. extéro- A 1 ex. de Piéron.
REM. 1.

Proprioception, subst. fém.a) Activité de la sensiblité proprioceptive; p.méton., résultat de cette activité. (Ds Lar. Lang. fr., Lexis 1975). b) Perception qu'a l'homme de son propre corps, par les sensations kinesthésiques et posturales en relation avec la situation du corps par rapport à l'intensité de l'attraction terrestre. Les données de la proprioception sont sensorielles et proviennent des trois sources suivantes: tactile (...), kinesthésiques [sic] (...), labyrinthique. L'accumulation des données de la proprioception fournit à l'être humain son schéma corporel (Lar. encyclop. Suppl.1968).
2.
Proprioceptivité, subst. fém.Ensemble des sensations résultant de la perception qu'a l'homme de son propre corps et renseignant sur l'activité du corps propre (sensations kinesthésiques et posturales) (d'apr. Greimas-Courtés 1979). Synon. thymie.On entendait d'abord par «schéma corporel» un résumé de notre expérience corporelle, capable de donner un commentaire et une signification à l'intéroceptivité et à la proprioceptivité du moment (Merleau-Ponty, Phénoménol. perception, 1945, p.114).
Prononc.: [pʀ ɔpʀijɔsεptif], fém. [-i:v]. Étymol. et Hist. 1935 (Arts et litt., p.36-4). Formé de proprio-, élém. tiré du lat. proprius «propre» (v. ce mot) et de [ré]ceptif*, cf. extéroceptif (s.v. extéro-) et intéroceptif. L'angl. proprioceptive est att. dep. 1927 (v. Ned Suppl.2, s.v. exteroceptor).

 

  DOCUMENT    cnrtl      LIEN
 

 
 
 
 

Des mutations qui changent la prolifération cellulaire en stress répété

 

 

 

 

 

 

 

Des mutations qui changent la prolifération cellulaire en stress répété

mercredi 7 mars 2018

Les cellules décident ou non de se diviser selon le contexte de leur environnement, qui change au cours du temps. Les voies moléculaires par lesquelles les cellules perçoivent les changements environnementaux pour prendre cette décision sont souvent connues, notamment grâce à la puissance expérimentale des organismes modèles comme la levure du boulanger. Mais les propriétés dynamiques de ces voies moléculaires sont très peu caractérisées. Quels sont les gènes qui permettent aux cellules de se décider lorsque les variations environnementales s'accélèrent? Cette étude publiée le 5 mars 2018 dans la revue Molecular Systems Biology a identifié des centaines de gènes qui sont essentiels au contrôle de la prolifération de cellules de levure lorsque l'environnement est fortement dynamique.

Une cellule se divise ou non selon son environnement. Certains environnements ne contiennent pas les ressources suffisantes, d'autres contiennent une molécule signal qui donne "l'ordre" ou "l'interdiction" de se diviser, d'autres encore "stressent" les cellules qui doivent alors s'adapter en changeant de forme ou de composition moléculaire avant d'envisager la division. Or l'environnement d'une cellule change au cours du temps et la décision dépend donc de facteurs extracellulaires qui sont dynamiques. Chez les organismes modèles comme la levure de boulangerie Saccharomyces cerevisiæ, les gènes contrôlant la réponse à un changement environnemental sont souvent connus. En revanche, les gènes qui rendent les cellules sensibles à la vitesse des changements environnementaux ne le sont généralement pas.
Les chercheurs du Laboratoire de biologie et modélisation de la cellule de l'Ecole Normale Supérieure de Lyon, ont cultivé des cellules de levure pendant plusieurs jours en changeant leur environnement toutes les 3 heures (environ le temps d'une division cellulaire), forçant ainsi les cellules à se diviser dans une alternance de condition "normale" et "stressante". La population de levure utilisée était un mélange représentatif de toutes les délétions des 3568 gènes étudiés, chaque cellule étant défectueuse pour l’un de ces gènes. Cela a permis, via une méthode de séquençage à haut débit (BAR-seq), d'identifier spécifiquement chacun des gènes dont l'absence donnait une prolifération anormale lors de ce stress répété.

Une grande partie des gènes ainsi identifiés ne sont pas des acteurs connus de la réponse au stress appliqué, ce qui montre que les cellules perçoivent la dynamique environnementale par des mécanismes jusque-là insoupçonnés. Les résultats sont fondamentaux pour comprendre la temporalité de l'adaptation cellulaire d'autant que les gènes identifiés sont conservés chez les autres espèces (plantes, mammifères...). C'est le cas de la phosphodiesterase PDE2 par exemple, qui contrôle le niveau intracellulaire d'AMP cyclique, une molécule-signal impliquée dans de multiples régulations.

L'étude illustre aussi comment la sélection naturelle des mutations s'exerce lorsque les conditions environnementales sont fortement dynamiques. En effet, les cellules portant une mutation qui accélère la vitesse de division ont un avantage sélectif sur les autres cellules. Les chercheurs ont observé que la variance génétique de la prolifération, qui reflète la vitesse d'adaptation d'une population de cellules mutantes, augmente avec la fréquence du stress répété. Ainsi des fluctuations à petite échelle de temps (celles de l'environnement) sont directement couplées à des fluctuations à grande échelle de temps (celles de la structure génétique de la population).

Références :
*         Genomics of cellular proliferation in periodic environmental fluctuations. Salignon J, Richard M, Fulcrand E, Duplus-Bottin H and Yvert G. Mol Syst Biol. (2018) 14:e7823. DOI 10.15252/msb.20177823
*
Contacts :
*         Gaël Yvert
Laboratoire de Biologie et Modélisation de la Cellule
UMR5239, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon 1
46 Allée d'Italie
69007 Lyon Site web équipe: http://www.ens-lyon.fr/LBMC/gisv/

 

   DOCUMENT         CNRS         LIEN
 

 
 
 
 

Premier film moléculaire en ‘slow motion’ et 3D d’une protéine membranaire, la bactériorhodopsine

 

 

 

 

 

 

 

Premier film moléculaire en ‘slow motion’ et 3D d’une protéine membranaire, la bactériorhodopsine


28 décembre 2016    RÉSULTATS SCIENTIFIQUES

Une prouesse technique a permis à un consortium international incluant un chercheur de l’Institut de biologie structurale, de montrer comment la protéine bactériorhodopsine utilise la lumière pour transporter des protons à travers la membrane cellulaire pour créer un différentiel de charge qui peut ensuite être utilisé pour générer l’énergie nécessaire au fonctionnement de la cellule. Cette étude a été publiée le 23 décembre dans la revue Science.

La bactériorhodopsine est une protéine qui absorbe la lumière et transporte des protons à travers les membranes cellulaires, une fonction essentielle des systèmes biologiques. Les chercheurs se sont longtemps interrogés sur le mécanisme que la protéine utilise pour expulser des protons de façon unidirectionnelle, de l’intérieur vers l’extérieur de la cellule. Pour le découvrir, un consortium international de chercheurs a utilisé le laser à électrons libres SACLA localisé au Japon, qui produit un faisceau de rayons X un million de fois plus intense que ceux des sources synchrotron, pourtant déjà très intenses. Les rayons X de SACLA présentent la particularité d’êtres générés pendant un temps extrêmement court, un centième de milliardième de seconde (une dizaine de femtosecondes). Les rayons X sont utilisés pour déterminer la structure de protéines qui traversent le faisceau sous la forme de microcristaux au sein d’un jet de graisse.
Pour cette étude, les chercheurs ont utilisé une technique appelée cristallographie sérielle femtoseconde en temps résolu, avec laquelle ils ont enregistré des dizaines de milliers d’images de la bactériorhodopsine après un intervalle de temps variant entre la nanoseconde et la milliseconde suivant l’excitation de lumière verte. En analysant les données, ils ont pu décrypter le mécanisme qui fait que le protéine expulse des protons hors de la cellule, dans un milieu chargé donc plus positivement. A l’instar d’une pile, c’est ce différentiel de charges qui permet d’alimenter les réactions chimiques qui font vivre la cellule.

Antoine Royant, à l’Institut de Biologie Structurale à Grenoble, a contribué à l’analyse structurale des 13 structures d’états intermédiaires obtenues sur 5 ordres de grandeur d’échelle de temps, et à l’identification du mécanisme d’action de la protéine.
« Cette expérience nous a permis de confirmer les hypothèses proposées au début des années 2000 sur les premières étapes du mécanisme, mais surtout de visualiser en temps réel les différents mouvements d’atome au sein de la bactériorhodopsine et comprendre ainsi comment ils s’enchaînent » explique A. Royant. L’excitation lumineuse entraîne un changement de configuration du rétinal (une forme de la vitamine A), la molécule colorée située au cœur de la protéine. Ce changement force une molécule d’eau structurale à s’en aller, puis un ensemble de réarrangements structuraux de la protéine entraîne l’expulsion d’un proton du côté extracellulaire de la protéine.
« Nous avons enfin compris comment les changements au voisinage du rétinal empêchent le proton de retraverser la protéine. Ce résultat permet d’envisager de comprendre à un très grand niveau de détail le mécanisme de protéines, et donc d’être capables de les utiliser à notre profit » conclut A. Royant.
 

Figure : Microcristaux de bactériorhodopsine obtenus en phase cubique de lipides. Les cristaux sont injectés dans le faisceau du laser à électron libre SACLA, et illuminés par un laser vert déclenchant le photocycle de la protéine. Des clichés de diffraction sont enregistrés entre quelques nanosecondes et quelques millisecondes et permettent d’identifier les changements structuraux au sein de la protéine (formée de sept hélices transmembranaires) qui se déroulent au cours de la photoréaction, permettant à des protons d’être expulsés hors de la cellule de façon unidirectionnelle.

© Eriko Nango, Cecilia Wickstrand, Richard Neutze, Antoine Royant
 
 
 
Contact
Antoine Royant

04 76 88 17 46

 

 DOCUMENT       cnrs        LIEN 

 
 
 
 

ORIGINES ET POSITION DE L'HOMME DANS L'ÉVOLUTION : LA CONNEXION CHROMOSOMIQUE

 

 

 

 

 

 

 

ORIGINES ET POSITION DE L'HOMME DANS L'ÉVOLUTION : LA CONNEXION CHROMOSOMIQUE

Il est possible de montrer que l'homme partage ses chromosomes, support de l'hérédité, avec l'ensemble des mammifères, et d'utiliser les différences, d'espèce à espèce, pour reconstruire leur phylogénie, c'est-à-dire leurs positions respectives dans l'arbre de l'évolution. L'étude qui sera basée sur des approches de cytogénétique classique et moléculaire, utilisant des sondes spécifiques de chromosomes humains, appliquées à une centaine de primates et une centaine de mammifères appartenant à d'autres ordres comme les carnivores, les rongeurs, les artiodactyles etc. Aujourd'hui, il n'est pas exagéré de dire que l'on connaît, de notre grand ancêtre mammalien, beaucoup mieux les chromosomes que la morphologie. Cette reconstitution d'une centaine de millions d'années d'évolution des chromosomes amène à poser des questions sur les mécanismes de la spéciation, l'origine des ordres de mammifères et celle de l'homme, l'origine de certaines pathologies, séquelles de notre propre évolution et à proposer des règles montrant que l'évolution n'est pas aléatoire.

Transcription de la 5ème conférence de l'Université de tous les savoirs réalisée le 5 janvier 2000 par Bernard Dutrillaux
Origines et position de l'Homme dans l'évolution: la connexion chromosomique
Un même caryotype, c'est-à-dire un même lot de chromosomes, est partagé par 99 % de la population humaine. Les variations, qui touchent donc 1 % de la population peuvent être considérées comme des modifications récentes et sans avenir, puisque liées à des pathologies ou des difficultés de procréation. Des conclusions semblables s'appliquent à un grand nombre d'espèces, et en particulier aux gorilles et aux chimpanzés, qui nous sont proches. Ainsi chaque espèce, ou presque, possède un caryotype qui lui est propre, mais cela ne signifie pas que tous les chromosomes diffèrent d'une espèce à l'autre. Ainsi l'homme partage 12 chromosomes avec le chimpanzé, 10 avec le gorille, 12 avec l'orang-outang, 5 avec le macaque, 2 avec le singe capucin et plus aucun avec les lémurs et les mammifères non primates. Pourtant, lorsqu'on analyse les structures chromosomiques, avec les moyens les plus fins possibles, il est possible de montrer que la quasi-totalité du matériel chromosomique est conservé entre l'homme, le lapin, l'écureuil, le bœuf, le chat etc. Seule varie l'organisation de ces structures. Cela démontre que nous avons tous des ancêtres communs, qui ne sont pas si éloignés de nous à l'échelle de l'évolution. Comparant les structures chromosomiques, soit par des méthodes faisant apparaître des bandes, soit par études de réplication de l'ADN, il est aujourd'hui possible de reconstituer, assez exactement le caryotype de l'ancêtre de tous les mammifères placentaires, dits euthériens. Ainsi, les chromosomes de cet animal, qui a vécu il y a quelques 100 millions d'années sont beaucoup mieux connus que tout autre de ses caractères. Une reconstitution des événements chromosomiques peut être réalisée, permettant l'établissement d'un arbre évolutif. Cette phylogénie chromosomique, progressivement établie à partir des années 70, n'a jamais été démentie, et a souvent permis de réajuster certaines interprétations. Quelles sont donc les informations que l'on peut y puiser ?
Dans un premier temps nous verrons comment les progrès techniques en cytogenétique, l'étude des chromosomes, ont permis à partir d'une information, qui il y a quelques années encore était relativement modeste, d'arriver à obtenir finalement beaucoup de données non pas sur les gènes mais sur leur support.
Après avoir exposé comment on peut observer les structures chromosomiques, nous les utiliserons progressivement pour comparer nos chromosomes à ceux de beaucoup d'autres espèces. Le caryotype représente l'ensemble des chromosomes d'une espèce. Nous reconstituerons les caryotypes ancestraux d'espèces qui nous ont précédé voici - 5 à 10 millions, - 30 millions, - 50 millions d'années et environ - 100 millions d'années d'évolution. Une fois reconstitué ce qu'étaient les chromosomes de nos lointains ancêtres, nous ferons le chemin inverse pour comprendre comment les chromosomes se sont différenciés, et comment situer notre propre espèce parmi les primates. Enfin nous aborderons les conséquences de cette évolution en terme de pathologie.
Commençons par un rappel sur l'ordre des primates. Les primates comprennent les singes, les humains et les pré-singes ou prosimiens. Les prosimiens sont représentés par les lémuriens de Madagascar, plus de 30 espèces, et d'autres prosimiens qui vivent en Afrique et en Asie, soit au total, environ 60 espèces.
Les simiens ou singes proprement dit plus les humains, comprennent deux infra ordres : les singes du nouveau monde ou plathyrrhiniens, environ 60 espèces, et les catharrhiniens, environ 70 espèces. L'ensemble des primates comprend donc près de 200 espèces.
Le travail qui a été réalisé sur les chromosomes a consisté à comparer les caryotypes, donc les chromosomes, d'une centaine de ces espèces de primates, soit près de la moitié des espèces vivantes. Certains groupes ayant les mêmes chromosomes, ils n'ont pas été étudiés systématiquement. Cette étude sur les chromosomes et l'évolution des primates est aujourd'hui encore la plus détaillée qui ait été développée sur la phylogénie de l'Homme et de toutes les espèces qui lui sont plus ou moins proches.
Le génome humain, l'ensemble de nos caractères héréditaires, est porté par l'ADN qui comprend un milliard de nucléotides ou unités du code génétique. Le nombre de nos gènes serait d'environ 100 000. Il y a 46 chromosomes chez l'Homme soit 23 paires. Chaque individu reçoit un chromosome pour chaque paire de son père et de sa mère. Chaque chromosome est constitué d'une seule molécule d'ADN. Un chromosome moyen par conséquent va contenir
3 000 à 4 000 gènes. Les structures qu'on peut faire apparaître sur les chromosomes, les bandes, comprennent en moyenne une centaine de gènes. C'est donc l'évolution du support matériel des gènes et non des gènes eux-mêmes que l'on va suivre.
Commençons par des aspects techniques. Les 100 000 gènes humains sont contenus dans le noyau de chaque cellule. Lorsque les cellules se divisent on voit apparaître des chromosomes au niveau du noyau. Il a fallu attendre jusqu'en 1956 pour parvenir à compter les 46 chromosomes qu'il y a chez l'Homme.
Pour cela il a fallu faire de la culture de cellules. À la fin des années 50, a été mis au point l'étalement sur lame de verre de tous les chromosomes permettant de les analyser, après avoir fait gonfler les cellules par un choc hypotonique.
Les techniques utilisées autour des années 60 consistaient à prendre des photos dont on découpait les chromosomes pour les reclasser grossièrement en fonction de la taille. L'étape d'après a consisté à faire apparaître des bandes sur les chromosomes. Ces bandes permettent d'appairer les chromosomes, car elles sont identiques sur les deux chromosomes de la même paire.
Le perfectionnement de ces méthodes a permis d'observer un ensemble de 1000 structures chromosomiques, très conservées durant l'évolution des mammifères. Nous allons suivre les modifications de position de ces structures soit d'un chromosome à l'autre, soit à l'intérieur d'un même chromosome.
D'autres techniques permettent de mettre en évidence par fluorescence, un gène donné sur un chromosome. Dans ce cas, un petit fragment d'ADN est utilisé comme sonde moléculaire et est hybridé sur le chromosome. Ainsi, lors de la comparaison des chromosomes d'une espèce à l'autre, il sera possible de rechercher si les gènes se trouvent là où on les attend par rapport à la structure chromosomique.
Il est également possible d'utiliser non plus le gène comme sonde moléculaire mais un chromosome. Suite à une hybridation in situ, tout le chromosome sera fluorescent.
Il y a une telle conservation du matériel génétique au cours de l'évolution qu'il est possible d'utiliser la sonde d'un chromosome humain donné et de l'hybrider sur une cellule d'un individu d'une autre espèce et ainsi savoir d'emblée que ce chromosome correspond au chromosome humain testé. Par exemple, le chromosome 3 humain a été utilisé comme sonde pour l'hybrider sur une cellule de macaque. Un seul chromosome est colorié, donc tous les composants du
chromosome 3 humain se trouvent sur un seul chromosome chez le macaque et tous les composants de ce chromosome étaient présents chez nos ancêtres communs avec le macaque il y a 30 millions d'années.
Une autre amélioration permet à la fois d'observer les bandes et de réaliser l'hybridation in situ.
Revenons au marquage en bandes chromosomiques. La comparaison d'un demi caryotype d'Homme et d'un demi caryotype de chimpanzé permet d'observer que des chromosomes sont tout à fait semblables et d'autres sont un peu différents. Ces différences sont dues à des cassures-fusions ou remaniements de chromosomes. Ainsi, une inversion correspond à la cassure d'un chromosome en deux points et à une rotation de l'ensemble qui sera rabouté. Une inversion péricentrique a lieu autour du centromère, qui est un peu comme le moteur du chromosome. Une inversion est dite paracentrique lorsque les cassures sont du même côté du centromère. Une translocation correspond à l'accrochage d'un fragment de chromosome sur un chromosome d'une autre paire. Ces types de remaniements se retrouvent au cour de l'évolution. Le matériel reste globalement présent mais les structures chromosomiques vont s'échanger, ou se remanier à l'intérieur d'un même chromosome.
Il existe ainsi une douzaine de remaniements qui vont séparer les chromosomes de l'Homme et du Chimpanzé. Des résultats équivalents sont obtenus lors de la comparaison du caryotype de l'orang-outan avec celui du chimpanzé, du gorille ou de l'homme. Ainsi en terme de remaniements des chromosomes, nous sommes à peu près équidistants du gorille, du chimpanzé et de l'orang-outan, de même que ces animaux sont à peu près équidistants entre eux.
Ces comparaisons nous amènent à reconstituer un caryotype ancestral selon le principe dit de parcimonie. Si 2, 3 ou 4 espèces ont exactement le même chromosome, on considère que leur ancêtre commun avait le même chromosome. C'est l'hypothèse la plus simple. Par exemple le chromosome 6 est partagé entre l'orang-outan, le gorille, le chimpanzé et l'Homme. Donc, l'ancêtre commun à ces animaux et à nous-même avait déjà ce chromosome. Le dernier ancêtre commun au chimpanzé, au gorille et à l'Homme a vécu il y a - 5 à 10 millions d'années. L'orang-outan s'est séparé avant. Nous pouvons reconstituer, par les bandes et les sondes chromosomiques, le caryotype de l'ancêtre commun au macaque et à l'Homme. Ceci nous ouvre le possibilité de comparer toute la branche des cercopithèques environ 60 espèces africaines et asiatiques, ce que nous avons fait.
Nous avons aussi étudié une trentaine d'espèces de singes du nouveau monde (platyrrhiniens) et reconstitué des points communs pour dresser leur caryotype ancestral commun. Il s'agit du caryotype d'un animal qui a vécu il y a une cinquantaine de millions d'années.
Pour savoir si ces reconstitutions sont exactes, il est très intéressant de comparer le caryotype reconstitué pour un groupe à celui d'un autre groupe. S'il y a des erreurs, les caryotypes doivent être très différents. À l'inverse, si les reconstitutions sont correctes, les caryotypes ancestraux devraient se ressembler. Les chromosomes du demi caryotype hypothétique de l'ancêtre commun aux plathyrrhiniens et du microcebus murinus, un prosimien, se ressemblent, d'où l'idée que des chromosomes identiques étaient présents chez l'ancêtre des simiens et des prosimiens.
Le même type de travail a été fait chez les carnivores et a conduit à un caryotype ancestral commun. La comparaison avec celui des platyrrhiniens a mis en évidence des similitudes et des différences s'expliquant par des inversions et des translocations.
La comparaison des chromosomes d'édentés, de l'ancêtre des carnivores, de l'ancêtre des plathyrrhiniens, de l'ancêtre des prosimiens, et de rongeurs a montré qu'il y a beaucoup de segments chromosomiques communs, mais aussi des différences. Ceci a permis de reconstituer le caryotype d'un ancêtre commun aux mammifères placentaires qui vivait il y a une centaine de millions d'années.
Ces comparaisons de caryotypes et ces caryotypes ancestraux permettent de reconstituer la phylogénie des espèces. La reconstitution de cette évolution chromosomique est basée sur la modification de la position des structures chromosomiques ou bandes. Chaque chromosome est une sorte de chapelet qui a évolué un peu pour son propre compte. En comparant l'évolution de chacun, il s'agit de trouver un schéma unique dans l'évolution.
Le principe peut être expliqué à partir d'un exemple où 5 modifications chromosomiques différencieraient le caryotype de 2 espèces de celui de leur ancêtre commun [figure 1].
Le premier chromosome est le même chez l'espèce A et l'espèce B mais est différent de celui du chromosome de l'ancêtre, qui est supposé connu.
Le chromosome 2 est modifié chez l'espèce A mais pas chez l'espèce B.
Le chromosome 3 est modifié chez l'espèce B mais pas chez l'espèce A.
Le chromosome 4 est modifié mais différemment à la fois chez l'espèce A et chez l'espèce B. Enfin, le chromosome 5 est modifié mais différemment à la fois chez l'espèce A et chez l'espèce B et la modification de B est intermédiaire entre l'ancêtre est celle de A.
Reporté sur un même schéma, nous constatons, que la modification du chromosome 1 est nécessairement sur un tronc commun avec celle du 5a. Celle du 2 est sur la branche de A et celle du 3 est sur celle de B, etc. Ainsi pourra-t-on reconstituer un schéma unique d'évolution.
Les caryotypes des primates comprennent 20 à 72 chromosomes et il y a plusieurs dizaines d'espèces. L'une des difficultés qui est apparue est que l'évolution ne fonctionne pas selon un schéma dichotomique. La dichotomie, la division simple, est une vision de l'esprit. En réalité, ça ne se passe pas comme ça. Une espèce ne naît pas d'un seul coup à partir d'une autre. Le plus souvent un remaniement va être partagé par deux espèces proches mais un autre sera partagé par l'une des deux et une troisième. L'embranchement n'est pas simple et il faut imaginer un tout autre système qui est une évolution en réseau. Qu'en est il lorsqu'on considère l'homme, le chimpanzé, le gorille et l'orang-outan ?
La comparaison des remaniements chromosomiques entre l'homme, le chimpanzé, le gorille et l'orang-outan conduit à un schéma par chromosome qui est pratiquement toujours différent de celui du chromosome précédent. Chaque chromosome a évolué pour son propre compte, comme les gènes [figure 2]. Il s'agit d'intégrer tous ces schémas dans un seul [figure 3].

La puissance de la cytogénétique réside dans le fait qu'elle considère l'ensemble du génome, l'ensemble des chromosomes, et qu'elle doit fournir des schémas cohérents avec toutes les observations. C'est une difficulté dans l'analyse mais un très gros avantage pour la qualité du résultat final. Il n'empêche que cette évolution n'est pas aussi simple qu'on l'aurait aimé. La comparaison de l'Homme, des deux espèces de chimpanzé, du gorille et de l'orang-outan, montre que trois remaniements sont communs au chimpanzé et à l'homme et qu'ainsi le chimpanzé est l'espèce la plus proche de l'homme. Néanmoins, trois autres remaniements sont partagés par le gorille et le chimpanzé. Pour conserver l'idée d'une évolution dichotomique, il faudrait imaginer qu'il y a eu convergence et que par hasard, dans cette partie de l'arbre de l'évolution, trois mêmes remaniements sont survenus dans deux branches différetes [figure
3.a]. Il est certain que cette interprétation n'est pas satisfaisante. L'autre interprétation [figure 3.b] est exactement la réciproque et elle n'est pas non plus très satisfaisante.
Ce qui est effectivement satisfaisant c'est d'arriver à un schéma où chaque remaniement n'est survenu qu'une fois [figure 3.c] avec des branches propres à chaque espèce. L'évolution a lieu dans une population, et ce n'est que progressivement à l'intérieur de cette population que sont localisées telles et telles anomalies chromosomiques. Une mutation apparaît dans une population et elle va se répandre comme l'onde d'une goutte qui tombe dans l'eau. Une autre mutation apparaît ailleurs dans la population et se répand de la même façon. Dans la population vont se créer des sortes d'hybrides avec deux mutations ou deux remaniements. Ainsi l'évolution ne marche pas d'un seul coup. Il n'y a rien de merveilleux qui permette qu'une espèce se forme à partir d'une autre en une génération.
Dans le schéma général [figure4], les cercopithèques représentent un exemple d'évolution en réseau. Pour qu'un phénomène de spéciation de ce type puisse se produire, il doit y avoir des hybrides, puisque des formes chromosomiques sont distribuées dans différentes branches de l'évolution. Cette théorie se vérifie sur le terrain puisque certains cercopithèques arboricoles vivent en groupes plurispécifiques. Dans la journée, des observateurs ont décrit des groupes formés de trois espèces différentes. La morphologie du mâle dominant était celle d'un hybride. Ces espèces se nourrissent en groupe et vivent ensemble toute la journée, mais le soir les animaux de chaque espèce vont dans un seul même arbre. Chaque matin le mâle dominant rameute tout le monde.
Notre ancêtre euthérien possédait environ 60 chromosomes, l'approximation portant sur quelques micro-chromosomes dont l'identification reste incertaine. Ces chromosomes ont été transmis tels quels aux ordres naissants de mammifères. De la sorte, il est impossible de proposer une filiation entre les ordres, aucune modification commune à deux ou plusieurs ordres n'étant repérée pour l'instant. Ces constatations mènent aux conclusions suivantes :
(1) à l'origine se trouvait une population de mammifères aux multiples potentialités évolutives, un peu comme la cellule à l'origine d'un individu est totipotente et susceptible de donner une descendance de plus en plus spécialisée pour former les tissus et organes qui le constituent ;
(2) à partir de cette population s'est créé un buissonnement, chaque tronc naissant étant rattaché à la base ;
(3) chaque émergence, à l'origine des futurs ordres de mammifères, s'est faite sans grand bouleversement des chromosomes. Cette dernière conclusion n'étaye pas certaines hypothèses imaginant une origine cataclysmique des mammifères soumis à des conditions extrêmes de climat et de radioactivité.
A ce stade, nous sommes donc à plus ou moins 100 millions d'années de l'hominisation, et le tronc évolutif qui nous rattache à nos racines paraît aussi banal que ceux rattachant les autres ordres de mammifères. Ce tronc est commun à tous les primates, et peu de modifications chromosomiques surviendront avant un premier clivage d'où naîtront deux groupes :
(1) les prosimiens [à droite sur la figure 4], surtout représentés par les lémurs de Madagascar et d'autres taxons africains et malaisiens. Ceux-ci se séparent de nous définitivement ;
(2) les simiens [à gauche sur la figure 4], ou singes proprement dits.
A nouveau, un tronc commun se forme pour tous les simiens. Peu de remaniements chromosomiques y surviennent, avant une seconde bifurcation majeure, séparant les futurs singes de l'ancien monde ou catarhiniens (CAT), auxquels nous sommes rattachés de ceux qui deviendront les singes du nouveau monde au platyrrhiniens (PLA). A nouveau, ces derniers se séparent irrémédiablement de nous. Prend alors naissance, vers -50 millions d'années un tronc commun à tous les catarhiniens, dans lequel s'accumulent de nombreuses modifications chromosomiques. Ceci suggère qu'une longue période s'est écoulée, durant laquelle beaucoup d'espèces se seraient formées et n'auraient donné comme descendance à long terme que nos propres lointains ancêtres. On s'attendrait à ce que de nombreux fossiles jalonnent cette longue période, mais ce n'est pas le cas. Une autre interprétation est donc possible, comme la survenue d'une période de forte instabilité, durant laquelle de multiples modifications chromosomiques se seraient produites sans association directe avec un phénomène de spéciation. Survient enfin un fait notable, vers -30 millions d'années : la séparation entre les ancêtres des cercopithécoïdes et des hominoïdes, mais à nouveau, il faudra que plusieurs remaniements chromosomiques s'installent pour parvenir à l'étape des derniers ancêtres des uns et des autres. Plus de soixante espèces se formeront chez les cercopithécoïdes, une dizaine chez les hominoïdes. Chez ces derniers, les gibbons se sépareront d'abord, puis l'orang-outang. Un dernier tronc commun mènera aux ancêtres que nous partageons avec les chimpanzés (il en existe 2 espèces) et le gorille. Ainsi, nous sommes, au plan évolutif, beaucoup plus proches des chimpanzés et du gorille que ces derniers ne sont proches de l'orang-outang. Nos ancêtres étaient donc des Pongidae, et ont subi les mêmes contraintes que ceux des grands singes actuels, du moins jusqu'à une date très récente. Pourtant, l'homme prolifère tandis que les grands singes disparaissent. Certes, l'homme a une responsabilité dans cette disparition, et c'est très regrettable, mais cette disparition ne peut lui être totalement imputée. Les aires de distribution de ces animaux ont toujours été limitées, et leur densité probablement toujours faible.
Ces animaux ont une faible capacité de reproduction. La raison en est leur grande taille, associée à leur longue période d'immaturité. Comme nous, un Pongidae n'est pubère que vers l'âge de 13 ans et n'a qu'un petit à la fois. Les femelles allaitent pendant 3 ans, ce qui entraîne une stérilité, de sorte que l'espace entre deux grossesses est de cinq ans en moyenne. Dans la nature, l'espérance de vie n'étant guère plus que 25 ans, cela ne laisse le temps que pour trois grossesses par femelle. Nos ancêtres Pongidae ont donc probablement vécu en populations réduites, ce qui expliquerait la difficulté de trouver des fossiles jalonnant l'histoire de nos lointains ancêtres. L'explosion démographique humaine, très récente à l'échelle de l'évolution, s'explique par notre organisation sociale, mais nous payons encore quelques tribus à notre évolution chromosomique. Le plus sérieux est la trisomie 21, ou mongolisme, mais pas comme cela a été avancé naguère, parce qu'elle marque un retour vers l'état simien. Cette affection est due à la mauvaise transmission du 21, qui est le plus petit de nos chromosomes. Il s'est formé voici 30 à 50 millions d'années, et s'est réassocié à d'autres chromosomes chez tous les Cercopithecoïdes et tous les gibbons sauf un, mais ni chez les Pongidae ni chez l'homme. Cette réassociation, ou translocation, formant un grand chromosome dont la trisomie est incompatible avec la vie, a débarrassé ceux qui la portent de la trisomie 21 [figure 5].
Cette translocation, avant qu'elle ne passe en 2 copies (état homozygote), comme pour tous les chromosomes, doit nécessairement exister en une seule copie (état hétérozygote). Ceci entraîne une période à haut risque d'aberrations chromosomiques [figure 6], comme on l'observe aujourd'hui, chez les femmes porteuses d'une telle translocation. Cet état hétérozygote, qui réduit considérablement la descendance, est éliminé et ne permet pas le passage à l'état homozygote si la fertilité est réduite. Ainsi, l'accroissement de taille, associé à une puberté tardive et à l'espacement des grossesses, est responsable d'une fertilité réduite et probablement du maintien du chromosome 21, et de sa trisomie. Celle-ci, qui ne touche qu'un descendant sur
700, ne constitue pas un facteur sélectif à l'échelle de l'évolution. Par contre, elle constitue une affection redoutée, que notre société n'a pas encore appris à gérer. La trisomie 21 n'est qu'un exemple parmi d'autres affections dont les racines se trouvent dans l'origine de nos chromosomes.

 

   VIDEO     canal U       LIEN   
 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 ] - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales / Confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google