ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

CHAOS, IMPRÉDICTIBILITÉ, HASARD

 

 

 

 

 

 

 

CHAOS, IMPRÉDICTIBILITÉ, HASARD

Le monde qui nous entoure paraît souvent imprévisible, plein de désordre et de hasard. Une partie de cette complexité du monde est maintenant devenue scientifiquement compréhensible grâce à la théorie du chaos déterministe. Cette théorie analyse quantitativement les limites à la prédictibilité d'une l'évolution temporelle déterministe : une faible incertitude initiale donne lieu dans certains cas à une incertitude croissante dans les prévisions, et cette incertitude devient inacceptable après un temps plus ou moins long. On comprend ainsi comment le hasard s'introduit inévitablement dans notre description du monde. L'exemple des prévisions météorologiques est à cet égard le plus frappant. Nous verrons comment les idées à ce sujet évoluent de Sénèque à Poincaré, puis nous discuterons comment le battement d'ailes du papillon de Lorenz peut affecter la météo, donnant lieu à des ouragans dévastateurs des milliers de kilomètres plus loin. Ainsi, la notion de chaos déterministe contribue non seulement à notre appréciation pratique des incertitudes du monde qui nous entoure, mais encore à la conceptualisation philosophique de ce que nous appelons cause et de ce que nous appelons hasard.

Texte de la 218e conférence de l’Université de tous les savoirs donnée le 5 août 2000.
Chaos, imprédictibilité et hasard par David Ruelle

Pour interpréter le monde qui nous entoure nous utilisons un grand nombre de concepts très divers. Certains concepts sont concrets comme vache, puceron, papillon, d’autres abstraits comme espace, temps, hasard, ou causalité. Ces concepts sont des créations humaines : leur histoire est intimement liée à celle du langage, et leur contenu peut varier d’une culture à une autre. Nous pensons que des mots comme espace, temps, hasard, causalité correspondent à des réalités fondamentales, indépendantes de la culture où nous vivons, et même indépendantes de l’existence de l’homme. Mais il faut bien admettre que les concepts abstraits que nous venons d’énumérer ont évolué au cours de l’histoire, et que cette évolution reflète un progrès dans notre compréhension de la nature des choses. Dans ce progrès, la philosophie et la science ont joué un rôle important. Dès l’Antiquité, par exemple, les gens cultivés avaient acquis une certaine idée de l’immensité de l’univers grâce aux travaux des astronomes. Des notions comme « erratique et imprévisible » ou « peu fréquent et improbable » ont sans doute une origine préhistorique ou même antérieure au langage. En effet, une bonne appréciation des risques peut aider à la survie. Ainsi si l’orage menace il est prudent de se mettre à l’abri. En général il faut se méfier des caprices des gens et de la nature, caprices qui expriment la liberté des hommes et des choses de se comporter parfois de manière aléatoire et imprévisible. Si les notions liées au hasard et au libre choix sont d’une grande aide dans la pratique, la notion de cause est aussi une conceptualisation utile : la fumée par exemple a une cause qui est le feu. De même les marées ont une cause qui est la lune : ce n’est pas tout à fait évident, mais la chose était connue des anciens, et cette connaissance pouvait être fort utile. On peut ainsi essayer de tout expliquer comme un enchaînement plus ou moins évident de causes et d’effets. On arrive de cette manière à une vision déterministe de l’univers. Si l’on y réfléchit un peu, le déterminisme, c’est-à-dire l’enchaînement bien ordonné des causes et des effets semble en contradiction avec la notion de hasard. Sénèque qui eut la charge d’éduquer le jeune Néron se penche sur le problème dans le De Providentia et dit ceci : « les phénomènes mêmes qui paraissent le plus confus et le plus irrégulier : je veux dire les pluies, les nuages, les explosions de la foudre, ..., ne se produisent pas capricieusement : ils ont aussi leurs causes. » Cette affirmation porte en germe le déterminisme scientifique, mais, il faut bien voir que son contenu est surtout idéologique. Sénèque était un amateur d’ordre, un ordre imposé par une loi éternelle et divine. Le désordre et le hasard lui répugnaient. Cependant, comme je l’ai dit, les notions liées au hasard sont utiles, pratiquement et conceptuellement, et l’on perd peut-être plus qu’on ne gagne à les évacuer pour des motifs idéologiques. On peut d’ailleurs reprocher de manière générale aux idéologies de vouloir supprimer des idées utiles, et cela s’applique encore aux idéologies modernes, dans leurs ambitions simplificatrices et leur intolérance aux fantaisies individuelles. Mais quittons maintenant le domaine idéologique pour parler de science. Et puisque le feu est la cause de la fumée, allons voir un physico-chimiste spécialiste des phénomènes de combustion. Il nous apprendra des choses fascinantes, et nous convaincra que les problèmes de combustion sont importants, complexes, et encore mal compris. En fait si l’on s’intéresse aux problèmes de causalité et de déterminisme, plutôt que de passer sa vie à étudier les problèmes de combustion, mieux vaut choisir un problème plus simple. Par exemple celui d’une pierre jetée en l’air, surtout s’il n’y a pas d’air. On peut en effet, avec une très bonne précision, décrire par des équations déterministes la trajectoire d’une pierre jetée en l’air. Si l’on connaît les conditions initiales, c’est-à-dire la position et la vitesse de la pierre à l’instant initial, on peut calculer la position et la vitesse à n’importe quel autre instant. Au lieu d’une pierre jetée en l’air nous pouvons considérer le ballet des planètes et autres corps célestes autour du soleil, ou la dynamique d’un fluide soumis à certaines forces. Dans tous ces cas l’évolution temporelle du système considéré, c’est-à-dire son mouvement, satisfait à des équations déterministes. Si l’on veut, on peut dire que les conditions initiales d’un système sont la cause de son évolution ultérieure et la déterminent complètement. Voilà qui devrait satisfaire Lucius Annaeus Seneca. Notons quand même que le concept de cause a été remplacé par celui d’évolution déterministe, ce qui n’est pas tout à fait la même chose. Par exemple, les équations de Newton qui déterminent les mouvements des planètes permettent à partir de conditions initiales données de calculer non seulement les états futurs du système solaire, mais également les états passés. On a oublié que la cause devait précéder l’effet. En fait, l’analyse scientifique du concept de cause montre qu’il s’agit d’une notion complexe et ambiguë. Cette notion nous est très utile pour vivre dans un monde complexe et ambigu, et nous ne voudrions pas nous en passer. Cependant la science préfère utiliser des concepts plus simples et moins ambigus, comme celui d’équation d'évolution déterministe. Notons d’ailleurs que l’idée de hasard semble incompatible avec la notion d’évolution déterministe tout autant qu’avec un enchaînement bien ordonné de causes et d’effets. Nous allons dans un moment revenir à ce problème. Mais avant cela je voudrais discuter une précaution verbale que j’ai prise en parlant d’équations d’évolution déterministe valables avec une très bonne précision. Si vous demandez à un physicien des équations d’évolution pour tel ou tel phénomène, il vous demandera avec quelle précision vous les voulez. Dans l’exemple de la dynamique du système solaire, suivant la précision requise, on tiendra compte ou non du ralentissement de la rotation de la terre par effet de marée, ou du déplacement du périhélie de Mercure dû à la relativité générale. Il faudra d’ailleurs bien s’arrêter quelque part : on ne peut pas tenir compte, vous en conviendrez, des déplacements de chaque vache dans sa prairie, ou de chaque puceron sur son rosier. Même si, en principe, les déplacements de la vache et du puceron perturbent quelque peu la rotation de la terre. En Bref, la physique répond aux questions qu’on lui pose avec une précision qui peut être remarquable, mais pas absolument parfaite. Et cela n’est pas sans conséquences philosophiques, comme nous le verrons plus loin. J’ai parlé des équations d’évolution déterministes qui régissent les mouvements des astres ou ceux des fluides, de l’atmosphère ou des océans par exemple. Ces équations sont dites classiques car elles ne tiennent pas compte de la mécanique quantique. En fait la mécanique quantique est une théorie plus exacte que la mécanique classique, mais plus difficile à manier, et comme les effets quantiques semblent négligeables pour les mouvements des astres, de l’atmosphère ou des océans, on utilisera dans ces cas des équations classiques. Cependant, la mécanique quantique utilise des concepts irréductibles à ceux de la mécanique classique. En particulier la mécanique quantique, contrairement à la mécanique classique, fait nécessairement référence au hasard. Dans une discussion des rapports entre hasard et déterminisme, ne faudrait-il pas par conséquent utiliser la mécanique quantique plutôt que classique ? La situation est la suivante : la physique nous propose diverses théories plus pou moins précises et dont les domaines d’application sont différents. Pour une classe donnée de phénomènes plusieurs théories sont en principe applicables, et on peut choisir celle que l’on veut : pour toute question raisonnable la réponse devrait être la même. En pratique on utilisera la théorie la plus facile à appliquer. Dans les cas qui nous intéressent, dynamique de l’atmosphère ou mouvement des planètes, il est naturel d’utiliser une théorie classique. Après quoi il sera toujours temps de vérifier que les effets quantiques ou relativistes que l’on a négligés étaient réellement négligeables. Et que somme toute les questions que l’on s’est posées étaient des questions raisonnables. Les progrès de la physique ont montré que les équations d’évolution déterministes étaient vérifiées avec une précision souvent excellente, et parfois stupéfiante. Ces équations sont notre reformulation de l’idée d’enchaînement bien ordonné de causes et d’effets. Il nous faut maintenant parler de hasard, et essayer de reformuler ce concept en termes qui permettent l’application des méthodes scientifiques. On dit qu’un événement relève du hasard s’il peut, pour autant que nous sachions, soit se produire soit ne pas se produire, et nous avons tendance à concevoir notre incertitude à ce sujet comme ontologique et fondamentale. Mais en fait l’utilité essentielle des concepts du hasard est de décrire une connaissance entachée d’incertitude, quelles que soient les origines de la connaissance et de l’incertitude. Si je dis qu’à cette heure-ci Jean Durand a une chance sur deux d’être chez lui, je fournis une information utile : cela vaut la peine d’essayer de téléphoner à son appartement. La probabilité un demi que j’attribue au fait que Jean Durand soit chez lui reflète ma connaissance de ses habitudes, mais n’a pas de caractère fondamental. En particulier, Jean Durand lui-même sait très bien s’il est chez lui ou pas. Il n’y a donc pas de paradoxe à ce que des probabilités différentes soient attribuées au même événement par différentes personnes, ou par la même personne à des moments différents. Le hasard correspond à une information incomplète, et peut avoir des origines diverses. Il y a un siècle environ, Henri Poincaré a fait une liste de sources possibles de hasard. Il mentionne par exemple qu’au casino, c’est le manque de contrôle musculaire de la personne qui met en mouvement la roulette qui justifie le caractère aléatoire de la position où elle s’arrête. Pour des raisons historiques évidentes, Poincaré ne mentionne pas la mécanique quantique comme source de hasard, mais il discute une source d’incertitude qui a été analysée en grand détail beaucoup plus tard sous le nom de chaos et que nous allons maintenant examiner. Prenons un système physique dont l’évolution temporelle est décrite par des équations déterministes. Si l’on connaît l’état du système à un instant initial, d’ailleurs arbitraire, on peut calculer son état à tout autre instant. Il n’y a aucune incertitude, aucun hasard. Mais nous avons supposé implicitement que nous connaissions l’état initial avec une totale précision. En fait, nous ne pouvons mesurer l’état initial qu’avec une précision limitée (et d’ailleurs les équations déterministes que nous utilisons ne représentent qu’approximativement l’évolution réelle du système physique qui nous occupe). Il faut donc voir comment une petite imprécision dans notre connaissance de l’état initial au temps 0 (zéro) va affecter nos prédictions sur un état ultérieur, au temps t. On s’attend à ce qu’une incertitude suffisamment petite au temps 0 donne lieu à une incertitude petite au temps t. Mais la question cruciale est de savoir comment cette incertitude va dépendre du temps t. Il se trouve que pour beaucoup de systèmes, dits chaotiques, l’incertitude (ou erreur probable) va croître rapidement, en fait exponentiellement avec le temps t. Cela veut dire que si l’on peut choisir un laps de temps T au bout duquel l’erreur est multipliée par 2, au temps 2T elle sera multipliée par 4, au temps 3T par 8, et ainsi de suite. Au temps 10T le facteur est 1024, au temps 20T plus d’un million, au temps 30T plus d’un milliard ... et tôt ou tard l’incertitude de notre prédiction cesse d’être petit pour devenir inacceptable. Le phénomène de croissance rapide des erreurs de prédiction d’un système physique, que l’on appelle chaos , introduit donc du hasard dans la description d’un système physique, même si ce système correspond à des équations d’évolution parfaitement déterministes comme celles de la dynamique des fluides ou du mouvement des astres. Voici ce que dit Henri Poincaré dans le chapitre sur le hasard de son livre Science et Méthode publiée en 1908 : « Une cause très petite, qui nous échappe, détermine un effet considérable que nous ne pouvons pas ne pas voir, et alors nous disons que cet effet est dû au hasard. » Cette affirmation, Poincaré en donne un exemple emprunté à la météorologie : « Pourquoi Les météorologistes ont-ils tant de peine à prédire le temps avec quelque certitude ? Pourquoi les chutes de pluie, les tempêtes elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien des gens trouvent tout naturel de prier pour avoir de la pluie ou du beau temps, alors qu’ils jugeraient ridicule de demander une éclipse par une prière ? Nous voyons que les grandes perturbations se produisent généralement dans les régions où l’atmosphère est en équilibre instable. Les météorologistes voient bien que cet équilibre est instable, qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de la dire ; un dixième de degré en plus ou en moins en un point quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième de degré, on aurait pu le savoir d’avance, mais les observations n’étaient ni assez serrées ni assez précises, et c’est pour cela que tout semple dû à l’intervention du hasard. » Les affirmations de Poincaré sur la météorologie dépassent, il faut bien le dire, ce que la science du début du 20-ième siècle permettait d’établie scientifiquement. Les intuitions géniales de Poincaré ont été confirmées, mais on trouverait sans peine des intuitions d’autres savants qui se sont révélées fausses. Il est donc heureux que, après avoir été oubliées, les idées de Poincaré aient été redécouvertes, étendues, et soumises à une analyse scientifique rigoureuse. Cette nouvelle période commence avec un article de Lorenz relatif à la météorologie en 1963, un article de Takens et moi-même sur la turbulence en 1971, puis une foule de travaux dans les années 70, 80, 90 qui édifient la théorie moderne du chaos. Le mot chaos lui-même apparaît dans son sens technique en 1975. Il n’est possible de donner ici qu’une vue très sommaire des aspects techniques de la théorie du chaos, mais j’insiste sur le fait que les résultats techniques sont essentiels. Ces résultats permettent de changer l’affirmation du sens commun suivant laquelle « de petites causes peuvent avoir de grands effets » en affirmations quantitatives comme celle concernant l’effet papillon dont nous parlerons dans un moment. La théorie du chaos étudie donc en détail comment une petite incertitude sur l’état initial d’une évolution temporelle déterministe peut donner lieu à une incertitude des prédictions qui croît rapidement avec le temps. On dit qu’il y a dépendance sensitive des conditions initiales. Cela veut dire que de petites causes peuvent avoir de grands effets, non seulement dans des situations exceptionnelles, mais pour toutes les conditions initiales. En résumé, le terme chaos désigne une situation où, pour n’importe quelle condition initiale, l’incertitude des prédictions croît rapidement avec le temps. Pour donner un exemple, considérons un faisceau de rayons lumineux parallèles tombant sur un miroir convexe. Après réflexion, nous avons un faisceau divergent de rayons lumineux. Si le faisceau initial était divergent, il serait encore plus divergent après réflexion. Si au lieu de rayons lumineux et de miroir nous avons une bille de billard qui rebondit élastiquement sur un obstacle convexe, la situation géométrique est la même, et on conclut qu’une petite incertitude sur la trajectoire de la bille avant le choc donne lieu à une incertitude plus grande après le choc. S’il y a plusieurs obstacles convexes que la bille heurte de façon répétée, l’incertitude croît exponentiellement, et on a une évolution temporelle chaotique. Cet exemple était connu de Poincaré, mais ce n’est que bien plus tard qu’il a été analysé de manière mathématiquement rigoureuse par Sinaï. Comme l’étude mathématique des systèmes chaotiques est d’une grande difficulté, l’étude du chaos combine en fait trois techniques : les mathématiques, les simulations sur ordinateur, et l’expérimentation (au laboratoire) ou l’observation (de l’atmosphère, des astres). Notons que les simulations sur ordinateur n’existaient pas du temps de Poincaré. Ces simulations ont joué un rôle essentiel en montrant que les systèmes déterministes tant soit peu complexes présentent fréquemment de la sensitivité aux conditions initiales. Le chaos est donc un phénomène très répandu. La météorologie fournit une application exemplaire des idées du chaos. En effet, on a de bons modèles qui décrivent la dynamique de l’atmosphère terrestre. L’étude par ordinateur de ces modèles montre qu’ils sont chaotiques. Si l’on change un peu les conditions initiales, les prédictions après quelques jours deviennent assez différentes : on a atteint la limite de la fiabilité du modèle. Bien entendu les prédictions faites avec ces modèles décollent après quelques jours de la réalité observée, et l’on comprend maintenant pourquoi : le chaos limite la prédictibilité du temps qu’il va faire. Le météorologiste Ed Lorenz, que nous avons déjà mentionné, a rendu populaire le concept de sensitivité aux conditions initiales sous le nom d’effet papillon. Dans un article grand public, il explique comment le battement des ailes d’un papillon, après quelques mois, a un tel effet sur l’atmosphère de la terre entière qu’il peut donner lieu à une tempête dévastatrice dans une contrée éloignée. Cela rappelle ce qu’écrivait Poincaré, mais paraît tellement extrême qu’on peut se demander s’il faut accorder à l’effet papillon plus qu’une valeur métaphorique. En fait, il semble bien que l’affirmation de Lorenz doit être prise au pied de la lettre. On va considérer la situation où le papillon bat des ailes comme une petite perturbation de la situation où il se tiendrait tranquille. On peut évaluer l’effet de cette petite perturbation en utilisant le caractère chaotique de la dynamique de l’atmosphère. (Rappelons que les modèles de l’atmosphère terrestre montrent une dynamique chaotique aux grandes échelles ; aux petites échelles, on a aussi du chaos à cause de la turbulence généralisée de l’air où nous baignons). La perturbation causée par le papillon va donc croître exponentiellement, c’est-à-dire très vite, et l’on peut se convaincre qu’au bout de quelques mois l’état de l’atmosphère terrestre aura changé du tout au tout. De sorte que des lieux éloignés de celui où se trouvait le papillon seront ravagés par la tempête. La prudence m’incite à prendre ici quelques précautions verbales. Il s’agit d’éviter qu’un doute sur un point de détail ne jette le discrédit sur des conclusions par ailleurs bien assurées. On peut se demander comment des perturbations aux petites dimensions (comme la dimension d’un papillon) vont se propager aux grandes dimensions (comme celle d’un ouragan). Si la propagation se fait mal ou très mal, peut-être faudra-t-il plus que quelques mois pour qu’un battement d’ailes de papillon détermine un ouragan ici ou là. Cela rendrait l’effet papillon moins intéressant. A vrai dire, la turbulence développée reste mal comprise et la conclusion de Lorenz reste donc un peu incertaine. L’image du papillon est jolie cependant, il serait dommage qu’on doive l’enterrer et, jusqu’à plus ample informé, j’y reste personnellement attaché. Quoi qu’il en soit, la circulation générale de l’atmosphère n’est pas prédictible plusieurs mois à l’avance. C’est un fait bien établi. Un ouragan peut donc se déclencher ici ou là de manière imprévue, mais cela dépendra peut-être d’incertitudes autres que les battements d’ailes d’un papillon. Si l’on y réfléchit un instant, on voit que le déclenchement d’une tempête à tel endroit et tel moment résulte d’innombrables facteurs agissant quelques mois plus tôt. Que ce soient des papillons qui battent des ailes, des chiens qui agitent la queue, des gens qui éternuent, ou tout ce qui vous plaira. La notion de cause s’est ici à ce point diluée qu’elle a perdu toute signification. Nous avons en fait perdu tout contrôle sur l’ensemble des « causes » qui, a un instant donné, concourent à ce qu’une tempête ait lieu ou n’ait pas lieu ici ou là quelques mois plus tard. Mêmes des perturbations infimes dues à la mécanique quantique, à la relativité générale, ou à l’effet gravitationnel d’un électron à la limite de l’univers observable, pourraient avoir des résultats importants au bout de quelques mois. Aurions-nous dû en tenir compte ? Il est clair qu’on n’aurait pas pu le faire. L’effet de ces perturbations infimes peut devenir important après quelques mois, mais un mur d’imprédicibilité nous interdit de le voir. Pour l’atmosphère terrestre, ce mur d’imprédicibilité est situé à quelques jours ou semaines de nous dans le futur. Je voudrais revenir brièvement à mon implication personnelle dans l’histoire du chaos. A la fin des années 60, je m’étais mis à l’étude de l’hydrodynamique, qui est la science de l’écoulement des fluides. Certains des écoulements que l’on observe sont tranquilles et réguliers, on les dit laminaires, d’autres sont agités et irréguliers, on les dit turbulents. Les explications de la turbulence que j’avais trouvées, en particulier dans un livre de Landau et Lifschitz sur l’hydrodynamique, ne me satisfaisaient pas, car elles ne tenaient pas compte d’un phénomène mathématique nouveau, dont j’avais appris l’existence dans les travaux de Smale. Quel est ce phénomène ? C’est l’abondance d’évolutions temporelles de nature étrange, avec dépendance sensitive des conditions initiales. Je m’étais alors convaincu que la turbulence devait être liée à une dynamique « étrange ». Dans un article joint avec Takens nous avons proposé que la turbulence hydrodynamique devait être représentée par des attracteurs étranges, ou chaotiques, et étudié le début de la turbulence, ou turbulence faible. Par la suite, de nombreux travaux expérimentaux ont justifié cette analyse. Cela ne résout pas le problème de la turbulence, qui reste l’un des plus difficiles de la physique théorique, mais on sait au moins que les théories « non chaotiques » jadis à l’honneur ne peuvent mener à rien. Quand le chaos est devenu à la mode, il a donné lieu à d’innombrables travaux. Certains de ces travaux développaient les aspects techniques de la théorie du chaos, et il n’est pas question d’en parler ici, d’autres analysaient diverses classes de phénomènes naturels dans l’espoir d’y trouver un comportement chaotique. C’est ainsi que j’ai proposé qu’il devait y avoir des oscillations chimiques chaotiques, ce qui effectivement a été démontré par l'expérience dans la suite. Ce fut une période féconde où, en réfléchissant un peu, on pouvait faire des découvertes d’un intérêt durable. Toutes les idées n’ont d’ailleurs pas été également bonnes. Ainsi, des essais d’application du chaos à l’économie et à la finance se sont révélés moins convaincants ; j’y reviendrai. Mais quand Wisdom et Laskar ont cherché du chaos dans la dynamique du système solaire, ils ont eu la main remarquablement heureuse. Le mouvement des astres du système solaire semble extraordinairement régulier, puisque l’on peut par le calcul prédire les éclipses, ou retrouver celles qui ont eu lieu, il y a plus de mille ans. On a donc longtemps pensé que le mouvement des planètes, et en particulier de la Terre, était exempt de chaos. On sait maintenant que c’est faux. L’orbite de la Terre est une ellipse dont les paramètres varient lentement au cours du temps, en particulier l’excentricité, c’est-à-dire l’aplatissement. En fait on a maintenant montré que la variation temporelle de l’excentricité est chaotique. Il y a donc de l’imprédicibilité dans le mouvement de la Terre. Le temps nécessaire pour que les erreurs de prédiction doublent est de l’ordre de 5 millions d’années. C’est un temps fort long par rapport à la vie humaine, mais assez court à l’échelle géologique. Le chaos que l’on a trouvé dans le système solaire n’est donc pas sans importance, et les travaux dans ce domaine se poursuivent activement, mais ce n’est pas ici le lieu d’en discuter. Les résultats accumulés depuis plusieurs décennies nous ont donné une assez bonne compréhension du rôle du chaos en météorologie, en turbulence hydrodynamique faible, dans la dynamique du système solaire, et pour quelques autres systèmes relativement simples. Qu’en est-il de la biologie, de l’économie, de la finance, ou des sciences sociales ? Il faut comprendre que les modélisations utiles dans le domaine du vivant sont assez différentes de celles qui nous satisfont pour des systèmes physiques simples. Les relations du hasard et la nécessité sont d’une autre nature. En fait le domaine du vivant est caractérisé par l’homéostasie qui maintient les organismes dans des conditions appropriées à la vie. L’homéostasie tend par exemple à maintenir la température de notre corps dans d’étroites limites. Elle supprime les fluctuations thermiques et est donc de nature antichaotique. La correction des fluctuations apparaît aussi au niveau du comportement individuel : un projet de voyage est maintenu même si une panne de voiture ou une grève fortuites obligent à changer de moyen de transport. Il s’agit ici de processus correctifs compliqués et qu’il est difficile de représenter par des modèles dynamiques simples auxquels on pourrait appliquer les techniques de la théorie du chaos. Clairement, de petites causes peuvent avoir de grands effets dans la vie de tous les jours, mais aux mécanismes causateurs de chaos s’ajoutent des mécanismes correcteurs, et il est difficile de débrouiller la dynamique qui en résulte. Dans le domaine de l’économie, de la finance ou de l’histoire, on voit aussi que des causes minimes peuvent avoir des effets importants. Par exemple une fluctuation météorologique peut causer la sécheresse dans une région et livrer sa population à la famine. Mais des mécanismes régulateurs effaceront peut-être l’effet de la famine, et l’histoire poursuivra son cours majestueux. Peut-être, mais ce n’est pas certain. Une guerre obscure en Afghanistan a précipité la chute du colossal empire Soviétique. Cette guerre obscure a concouru avec de nombreuses autres causes obscures à miner un empire devenu plus instable qu’on ne le pensait. En fait nous vivons tous dans un monde globalement instable : la rapidité des transports, la transmission presque instantanée de l’information, la mondialisation de l’économie, tout cela améliore peut-être le fonctionnement de la société humaine, mais rend aussi cette société plus instable, et cela à l’échelle de la planète. Une maladie virale nouvelle, ou un virus informatique, ou une crise financière font sentir leurs effets partout et immédiatement. Aujourd’hui comme hier le futur individuel de chaque homme et chaque femme reste incertain. Mais jamais sans doute jusqu’à présent l’imprédictibilité du futur n’a affecté aussi globalement notre civilisation tout entière.

 

  VIDEO       CANAL  U         LIEN   

 
 
 
 

CHAOS, IMPRÉDICTIBILITÉ, HASARD

 

 

 

 

 

 

 

CHAOS, IMPRÉDICTIBILITÉ, HASARD

Le monde qui nous entoure paraît souvent imprévisible, plein de désordre et de hasard. Une partie de cette complexité du monde est maintenant devenue scientifiquement compréhensible grâce à la théorie du chaos déterministe. Cette théorie analyse quantitativement les limites à la prédictibilité d'une l'évolution temporelle déterministe : une faible incertitude initiale donne lieu dans certains cas à une incertitude croissante dans les prévisions, et cette incertitude devient inacceptable après un temps plus ou moins long. On comprend ainsi comment le hasard s'introduit inévitablement dans notre description du monde. L'exemple des prévisions météorologiques est à cet égard le plus frappant. Nous verrons comment les idées à ce sujet évoluent de Sénèque à Poincaré, puis nous discuterons comment le battement d'ailes du papillon de Lorenz peut affecter la météo, donnant lieu à des ouragans dévastateurs des milliers de kilomètres plus loin. Ainsi, la notion de chaos déterministe contribue non seulement à notre appréciation pratique des incertitudes du monde qui nous entoure, mais encore à la conceptualisation philosophique de ce que nous appelons cause et de ce que nous appelons hasard.

Texte de la 218e conférence de l’Université de tous les savoirs donnée le 5 août 2000.
Chaos, imprédictibilité et hasard par David Ruelle

Pour interpréter le monde qui nous entoure nous utilisons un grand nombre de concepts très divers. Certains concepts sont concrets comme vache, puceron, papillon, d’autres abstraits comme espace, temps, hasard, ou causalité. Ces concepts sont des créations humaines : leur histoire est intimement liée à celle du langage, et leur contenu peut varier d’une culture à une autre. Nous pensons que des mots comme espace, temps, hasard, causalité correspondent à des réalités fondamentales, indépendantes de la culture où nous vivons, et même indépendantes de l’existence de l’homme. Mais il faut bien admettre que les concepts abstraits que nous venons d’énumérer ont évolué au cours de l’histoire, et que cette évolution reflète un progrès dans notre compréhension de la nature des choses. Dans ce progrès, la philosophie et la science ont joué un rôle important. Dès l’Antiquité, par exemple, les gens cultivés avaient acquis une certaine idée de l’immensité de l’univers grâce aux travaux des astronomes. Des notions comme « erratique et imprévisible » ou « peu fréquent et improbable » ont sans doute une origine préhistorique ou même antérieure au langage. En effet, une bonne appréciation des risques peut aider à la survie. Ainsi si l’orage menace il est prudent de se mettre à l’abri. En général il faut se méfier des caprices des gens et de la nature, caprices qui expriment la liberté des hommes et des choses de se comporter parfois de manière aléatoire et imprévisible. Si les notions liées au hasard et au libre choix sont d’une grande aide dans la pratique, la notion de cause est aussi une conceptualisation utile : la fumée par exemple a une cause qui est le feu. De même les marées ont une cause qui est la lune : ce n’est pas tout à fait évident, mais la chose était connue des anciens, et cette connaissance pouvait être fort utile. On peut ainsi essayer de tout expliquer comme un enchaînement plus ou moins évident de causes et d’effets. On arrive de cette manière à une vision déterministe de l’univers. Si l’on y réfléchit un peu, le déterminisme, c’est-à-dire l’enchaînement bien ordonné des causes et des effets semble en contradiction avec la notion de hasard. Sénèque qui eut la charge d’éduquer le jeune Néron se penche sur le problème dans le De Providentia et dit ceci : « les phénomènes mêmes qui paraissent le plus confus et le plus irrégulier : je veux dire les pluies, les nuages, les explosions de la foudre, ..., ne se produisent pas capricieusement : ils ont aussi leurs causes. » Cette affirmation porte en germe le déterminisme scientifique, mais, il faut bien voir que son contenu est surtout idéologique. Sénèque était un amateur d’ordre, un ordre imposé par une loi éternelle et divine. Le désordre et le hasard lui répugnaient. Cependant, comme je l’ai dit, les notions liées au hasard sont utiles, pratiquement et conceptuellement, et l’on perd peut-être plus qu’on ne gagne à les évacuer pour des motifs idéologiques. On peut d’ailleurs reprocher de manière générale aux idéologies de vouloir supprimer des idées utiles, et cela s’applique encore aux idéologies modernes, dans leurs ambitions simplificatrices et leur intolérance aux fantaisies individuelles. Mais quittons maintenant le domaine idéologique pour parler de science. Et puisque le feu est la cause de la fumée, allons voir un physico-chimiste spécialiste des phénomènes de combustion. Il nous apprendra des choses fascinantes, et nous convaincra que les problèmes de combustion sont importants, complexes, et encore mal compris. En fait si l’on s’intéresse aux problèmes de causalité et de déterminisme, plutôt que de passer sa vie à étudier les problèmes de combustion, mieux vaut choisir un problème plus simple. Par exemple celui d’une pierre jetée en l’air, surtout s’il n’y a pas d’air. On peut en effet, avec une très bonne précision, décrire par des équations déterministes la trajectoire d’une pierre jetée en l’air. Si l’on connaît les conditions initiales, c’est-à-dire la position et la vitesse de la pierre à l’instant initial, on peut calculer la position et la vitesse à n’importe quel autre instant. Au lieu d’une pierre jetée en l’air nous pouvons considérer le ballet des planètes et autres corps célestes autour du soleil, ou la dynamique d’un fluide soumis à certaines forces. Dans tous ces cas l’évolution temporelle du système considéré, c’est-à-dire son mouvement, satisfait à des équations déterministes. Si l’on veut, on peut dire que les conditions initiales d’un système sont la cause de son évolution ultérieure et la déterminent complètement. Voilà qui devrait satisfaire Lucius Annaeus Seneca. Notons quand même que le concept de cause a été remplacé par celui d’évolution déterministe, ce qui n’est pas tout à fait la même chose. Par exemple, les équations de Newton qui déterminent les mouvements des planètes permettent à partir de conditions initiales données de calculer non seulement les états futurs du système solaire, mais également les états passés. On a oublié que la cause devait précéder l’effet. En fait, l’analyse scientifique du concept de cause montre qu’il s’agit d’une notion complexe et ambiguë. Cette notion nous est très utile pour vivre dans un monde complexe et ambigu, et nous ne voudrions pas nous en passer. Cependant la science préfère utiliser des concepts plus simples et moins ambigus, comme celui d’équation d'évolution déterministe. Notons d’ailleurs que l’idée de hasard semble incompatible avec la notion d’évolution déterministe tout autant qu’avec un enchaînement bien ordonné de causes et d’effets. Nous allons dans un moment revenir à ce problème. Mais avant cela je voudrais discuter une précaution verbale que j’ai prise en parlant d’équations d’évolution déterministe valables avec une très bonne précision. Si vous demandez à un physicien des équations d’évolution pour tel ou tel phénomène, il vous demandera avec quelle précision vous les voulez. Dans l’exemple de la dynamique du système solaire, suivant la précision requise, on tiendra compte ou non du ralentissement de la rotation de la terre par effet de marée, ou du déplacement du périhélie de Mercure dû à la relativité générale. Il faudra d’ailleurs bien s’arrêter quelque part : on ne peut pas tenir compte, vous en conviendrez, des déplacements de chaque vache dans sa prairie, ou de chaque puceron sur son rosier. Même si, en principe, les déplacements de la vache et du puceron perturbent quelque peu la rotation de la terre. En Bref, la physique répond aux questions qu’on lui pose avec une précision qui peut être remarquable, mais pas absolument parfaite. Et cela n’est pas sans conséquences philosophiques, comme nous le verrons plus loin. J’ai parlé des équations d’évolution déterministes qui régissent les mouvements des astres ou ceux des fluides, de l’atmosphère ou des océans par exemple. Ces équations sont dites classiques car elles ne tiennent pas compte de la mécanique quantique. En fait la mécanique quantique est une théorie plus exacte que la mécanique classique, mais plus difficile à manier, et comme les effets quantiques semblent négligeables pour les mouvements des astres, de l’atmosphère ou des océans, on utilisera dans ces cas des équations classiques. Cependant, la mécanique quantique utilise des concepts irréductibles à ceux de la mécanique classique. En particulier la mécanique quantique, contrairement à la mécanique classique, fait nécessairement référence au hasard. Dans une discussion des rapports entre hasard et déterminisme, ne faudrait-il pas par conséquent utiliser la mécanique quantique plutôt que classique ? La situation est la suivante : la physique nous propose diverses théories plus pou moins précises et dont les domaines d’application sont différents. Pour une classe donnée de phénomènes plusieurs théories sont en principe applicables, et on peut choisir celle que l’on veut : pour toute question raisonnable la réponse devrait être la même. En pratique on utilisera la théorie la plus facile à appliquer. Dans les cas qui nous intéressent, dynamique de l’atmosphère ou mouvement des planètes, il est naturel d’utiliser une théorie classique. Après quoi il sera toujours temps de vérifier que les effets quantiques ou relativistes que l’on a négligés étaient réellement négligeables. Et que somme toute les questions que l’on s’est posées étaient des questions raisonnables. Les progrès de la physique ont montré que les équations d’évolution déterministes étaient vérifiées avec une précision souvent excellente, et parfois stupéfiante. Ces équations sont notre reformulation de l’idée d’enchaînement bien ordonné de causes et d’effets. Il nous faut maintenant parler de hasard, et essayer de reformuler ce concept en termes qui permettent l’application des méthodes scientifiques. On dit qu’un événement relève du hasard s’il peut, pour autant que nous sachions, soit se produire soit ne pas se produire, et nous avons tendance à concevoir notre incertitude à ce sujet comme ontologique et fondamentale. Mais en fait l’utilité essentielle des concepts du hasard est de décrire une connaissance entachée d’incertitude, quelles que soient les origines de la connaissance et de l’incertitude. Si je dis qu’à cette heure-ci Jean Durand a une chance sur deux d’être chez lui, je fournis une information utile : cela vaut la peine d’essayer de téléphoner à son appartement. La probabilité un demi que j’attribue au fait que Jean Durand soit chez lui reflète ma connaissance de ses habitudes, mais n’a pas de caractère fondamental. En particulier, Jean Durand lui-même sait très bien s’il est chez lui ou pas. Il n’y a donc pas de paradoxe à ce que des probabilités différentes soient attribuées au même événement par différentes personnes, ou par la même personne à des moments différents. Le hasard correspond à une information incomplète, et peut avoir des origines diverses. Il y a un siècle environ, Henri Poincaré a fait une liste de sources possibles de hasard. Il mentionne par exemple qu’au casino, c’est le manque de contrôle musculaire de la personne qui met en mouvement la roulette qui justifie le caractère aléatoire de la position où elle s’arrête. Pour des raisons historiques évidentes, Poincaré ne mentionne pas la mécanique quantique comme source de hasard, mais il discute une source d’incertitude qui a été analysée en grand détail beaucoup plus tard sous le nom de chaos et que nous allons maintenant examiner. Prenons un système physique dont l’évolution temporelle est décrite par des équations déterministes. Si l’on connaît l’état du système à un instant initial, d’ailleurs arbitraire, on peut calculer son état à tout autre instant. Il n’y a aucune incertitude, aucun hasard. Mais nous avons supposé implicitement que nous connaissions l’état initial avec une totale précision. En fait, nous ne pouvons mesurer l’état initial qu’avec une précision limitée (et d’ailleurs les équations déterministes que nous utilisons ne représentent qu’approximativement l’évolution réelle du système physique qui nous occupe). Il faut donc voir comment une petite imprécision dans notre connaissance de l’état initial au temps 0 (zéro) va affecter nos prédictions sur un état ultérieur, au temps t. On s’attend à ce qu’une incertitude suffisamment petite au temps 0 donne lieu à une incertitude petite au temps t. Mais la question cruciale est de savoir comment cette incertitude va dépendre du temps t. Il se trouve que pour beaucoup de systèmes, dits chaotiques, l’incertitude (ou erreur probable) va croître rapidement, en fait exponentiellement avec le temps t. Cela veut dire que si l’on peut choisir un laps de temps T au bout duquel l’erreur est multipliée par 2, au temps 2T elle sera multipliée par 4, au temps 3T par 8, et ainsi de suite. Au temps 10T le facteur est 1024, au temps 20T plus d’un million, au temps 30T plus d’un milliard ... et tôt ou tard l’incertitude de notre prédiction cesse d’être petit pour devenir inacceptable. Le phénomène de croissance rapide des erreurs de prédiction d’un système physique, que l’on appelle chaos , introduit donc du hasard dans la description d’un système physique, même si ce système correspond à des équations d’évolution parfaitement déterministes comme celles de la dynamique des fluides ou du mouvement des astres. Voici ce que dit Henri Poincaré dans le chapitre sur le hasard de son livre Science et Méthode publiée en 1908 : « Une cause très petite, qui nous échappe, détermine un effet considérable que nous ne pouvons pas ne pas voir, et alors nous disons que cet effet est dû au hasard. » Cette affirmation, Poincaré en donne un exemple emprunté à la météorologie : « Pourquoi Les météorologistes ont-ils tant de peine à prédire le temps avec quelque certitude ? Pourquoi les chutes de pluie, les tempêtes elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien des gens trouvent tout naturel de prier pour avoir de la pluie ou du beau temps, alors qu’ils jugeraient ridicule de demander une éclipse par une prière ? Nous voyons que les grandes perturbations se produisent généralement dans les régions où l’atmosphère est en équilibre instable. Les météorologistes voient bien que cet équilibre est instable, qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de la dire ; un dixième de degré en plus ou en moins en un point quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième de degré, on aurait pu le savoir d’avance, mais les observations n’étaient ni assez serrées ni assez précises, et c’est pour cela que tout semple dû à l’intervention du hasard. » Les affirmations de Poincaré sur la météorologie dépassent, il faut bien le dire, ce que la science du début du 20-ième siècle permettait d’établie scientifiquement. Les intuitions géniales de Poincaré ont été confirmées, mais on trouverait sans peine des intuitions d’autres savants qui se sont révélées fausses. Il est donc heureux que, après avoir été oubliées, les idées de Poincaré aient été redécouvertes, étendues, et soumises à une analyse scientifique rigoureuse. Cette nouvelle période commence avec un article de Lorenz relatif à la météorologie en 1963, un article de Takens et moi-même sur la turbulence en 1971, puis une foule de travaux dans les années 70, 80, 90 qui édifient la théorie moderne du chaos. Le mot chaos lui-même apparaît dans son sens technique en 1975. Il n’est possible de donner ici qu’une vue très sommaire des aspects techniques de la théorie du chaos, mais j’insiste sur le fait que les résultats techniques sont essentiels. Ces résultats permettent de changer l’affirmation du sens commun suivant laquelle « de petites causes peuvent avoir de grands effets » en affirmations quantitatives comme celle concernant l’effet papillon dont nous parlerons dans un moment. La théorie du chaos étudie donc en détail comment une petite incertitude sur l’état initial d’une évolution temporelle déterministe peut donner lieu à une incertitude des prédictions qui croît rapidement avec le temps. On dit qu’il y a dépendance sensitive des conditions initiales. Cela veut dire que de petites causes peuvent avoir de grands effets, non seulement dans des situations exceptionnelles, mais pour toutes les conditions initiales. En résumé, le terme chaos désigne une situation où, pour n’importe quelle condition initiale, l’incertitude des prédictions croît rapidement avec le temps. Pour donner un exemple, considérons un faisceau de rayons lumineux parallèles tombant sur un miroir convexe. Après réflexion, nous avons un faisceau divergent de rayons lumineux. Si le faisceau initial était divergent, il serait encore plus divergent après réflexion. Si au lieu de rayons lumineux et de miroir nous avons une bille de billard qui rebondit élastiquement sur un obstacle convexe, la situation géométrique est la même, et on conclut qu’une petite incertitude sur la trajectoire de la bille avant le choc donne lieu à une incertitude plus grande après le choc. S’il y a plusieurs obstacles convexes que la bille heurte de façon répétée, l’incertitude croît exponentiellement, et on a une évolution temporelle chaotique. Cet exemple était connu de Poincaré, mais ce n’est que bien plus tard qu’il a été analysé de manière mathématiquement rigoureuse par Sinaï. Comme l’étude mathématique des systèmes chaotiques est d’une grande difficulté, l’étude du chaos combine en fait trois techniques : les mathématiques, les simulations sur ordinateur, et l’expérimentation (au laboratoire) ou l’observation (de l’atmosphère, des astres). Notons que les simulations sur ordinateur n’existaient pas du temps de Poincaré. Ces simulations ont joué un rôle essentiel en montrant que les systèmes déterministes tant soit peu complexes présentent fréquemment de la sensitivité aux conditions initiales. Le chaos est donc un phénomène très répandu. La météorologie fournit une application exemplaire des idées du chaos. En effet, on a de bons modèles qui décrivent la dynamique de l’atmosphère terrestre. L’étude par ordinateur de ces modèles montre qu’ils sont chaotiques. Si l’on change un peu les conditions initiales, les prédictions après quelques jours deviennent assez différentes : on a atteint la limite de la fiabilité du modèle. Bien entendu les prédictions faites avec ces modèles décollent après quelques jours de la réalité observée, et l’on comprend maintenant pourquoi : le chaos limite la prédictibilité du temps qu’il va faire. Le météorologiste Ed Lorenz, que nous avons déjà mentionné, a rendu populaire le concept de sensitivité aux conditions initiales sous le nom d’effet papillon. Dans un article grand public, il explique comment le battement des ailes d’un papillon, après quelques mois, a un tel effet sur l’atmosphère de la terre entière qu’il peut donner lieu à une tempête dévastatrice dans une contrée éloignée. Cela rappelle ce qu’écrivait Poincaré, mais paraît tellement extrême qu’on peut se demander s’il faut accorder à l’effet papillon plus qu’une valeur métaphorique. En fait, il semble bien que l’affirmation de Lorenz doit être prise au pied de la lettre. On va considérer la situation où le papillon bat des ailes comme une petite perturbation de la situation où il se tiendrait tranquille. On peut évaluer l’effet de cette petite perturbation en utilisant le caractère chaotique de la dynamique de l’atmosphère. (Rappelons que les modèles de l’atmosphère terrestre montrent une dynamique chaotique aux grandes échelles ; aux petites échelles, on a aussi du chaos à cause de la turbulence généralisée de l’air où nous baignons). La perturbation causée par le papillon va donc croître exponentiellement, c’est-à-dire très vite, et l’on peut se convaincre qu’au bout de quelques mois l’état de l’atmosphère terrestre aura changé du tout au tout. De sorte que des lieux éloignés de celui où se trouvait le papillon seront ravagés par la tempête. La prudence m’incite à prendre ici quelques précautions verbales. Il s’agit d’éviter qu’un doute sur un point de détail ne jette le discrédit sur des conclusions par ailleurs bien assurées. On peut se demander comment des perturbations aux petites dimensions (comme la dimension d’un papillon) vont se propager aux grandes dimensions (comme celle d’un ouragan). Si la propagation se fait mal ou très mal, peut-être faudra-t-il plus que quelques mois pour qu’un battement d’ailes de papillon détermine un ouragan ici ou là. Cela rendrait l’effet papillon moins intéressant. A vrai dire, la turbulence développée reste mal comprise et la conclusion de Lorenz reste donc un peu incertaine. L’image du papillon est jolie cependant, il serait dommage qu’on doive l’enterrer et, jusqu’à plus ample informé, j’y reste personnellement attaché. Quoi qu’il en soit, la circulation générale de l’atmosphère n’est pas prédictible plusieurs mois à l’avance. C’est un fait bien établi. Un ouragan peut donc se déclencher ici ou là de manière imprévue, mais cela dépendra peut-être d’incertitudes autres que les battements d’ailes d’un papillon. Si l’on y réfléchit un instant, on voit que le déclenchement d’une tempête à tel endroit et tel moment résulte d’innombrables facteurs agissant quelques mois plus tôt. Que ce soient des papillons qui battent des ailes, des chiens qui agitent la queue, des gens qui éternuent, ou tout ce qui vous plaira. La notion de cause s’est ici à ce point diluée qu’elle a perdu toute signification. Nous avons en fait perdu tout contrôle sur l’ensemble des « causes » qui, a un instant donné, concourent à ce qu’une tempête ait lieu ou n’ait pas lieu ici ou là quelques mois plus tard. Mêmes des perturbations infimes dues à la mécanique quantique, à la relativité générale, ou à l’effet gravitationnel d’un électron à la limite de l’univers observable, pourraient avoir des résultats importants au bout de quelques mois. Aurions-nous dû en tenir compte ? Il est clair qu’on n’aurait pas pu le faire. L’effet de ces perturbations infimes peut devenir important après quelques mois, mais un mur d’imprédicibilité nous interdit de le voir. Pour l’atmosphère terrestre, ce mur d’imprédicibilité est situé à quelques jours ou semaines de nous dans le futur. Je voudrais revenir brièvement à mon implication personnelle dans l’histoire du chaos. A la fin des années 60, je m’étais mis à l’étude de l’hydrodynamique, qui est la science de l’écoulement des fluides. Certains des écoulements que l’on observe sont tranquilles et réguliers, on les dit laminaires, d’autres sont agités et irréguliers, on les dit turbulents. Les explications de la turbulence que j’avais trouvées, en particulier dans un livre de Landau et Lifschitz sur l’hydrodynamique, ne me satisfaisaient pas, car elles ne tenaient pas compte d’un phénomène mathématique nouveau, dont j’avais appris l’existence dans les travaux de Smale. Quel est ce phénomène ? C’est l’abondance d’évolutions temporelles de nature étrange, avec dépendance sensitive des conditions initiales. Je m’étais alors convaincu que la turbulence devait être liée à une dynamique « étrange ». Dans un article joint avec Takens nous avons proposé que la turbulence hydrodynamique devait être représentée par des attracteurs étranges, ou chaotiques, et étudié le début de la turbulence, ou turbulence faible. Par la suite, de nombreux travaux expérimentaux ont justifié cette analyse. Cela ne résout pas le problème de la turbulence, qui reste l’un des plus difficiles de la physique théorique, mais on sait au moins que les théories « non chaotiques » jadis à l’honneur ne peuvent mener à rien. Quand le chaos est devenu à la mode, il a donné lieu à d’innombrables travaux. Certains de ces travaux développaient les aspects techniques de la théorie du chaos, et il n’est pas question d’en parler ici, d’autres analysaient diverses classes de phénomènes naturels dans l’espoir d’y trouver un comportement chaotique. C’est ainsi que j’ai proposé qu’il devait y avoir des oscillations chimiques chaotiques, ce qui effectivement a été démontré par l'expérience dans la suite. Ce fut une période féconde où, en réfléchissant un peu, on pouvait faire des découvertes d’un intérêt durable. Toutes les idées n’ont d’ailleurs pas été également bonnes. Ainsi, des essais d’application du chaos à l’économie et à la finance se sont révélés moins convaincants ; j’y reviendrai. Mais quand Wisdom et Laskar ont cherché du chaos dans la dynamique du système solaire, ils ont eu la main remarquablement heureuse. Le mouvement des astres du système solaire semble extraordinairement régulier, puisque l’on peut par le calcul prédire les éclipses, ou retrouver celles qui ont eu lieu, il y a plus de mille ans. On a donc longtemps pensé que le mouvement des planètes, et en particulier de la Terre, était exempt de chaos. On sait maintenant que c’est faux. L’orbite de la Terre est une ellipse dont les paramètres varient lentement au cours du temps, en particulier l’excentricité, c’est-à-dire l’aplatissement. En fait on a maintenant montré que la variation temporelle de l’excentricité est chaotique. Il y a donc de l’imprédicibilité dans le mouvement de la Terre. Le temps nécessaire pour que les erreurs de prédiction doublent est de l’ordre de 5 millions d’années. C’est un temps fort long par rapport à la vie humaine, mais assez court à l’échelle géologique. Le chaos que l’on a trouvé dans le système solaire n’est donc pas sans importance, et les travaux dans ce domaine se poursuivent activement, mais ce n’est pas ici le lieu d’en discuter. Les résultats accumulés depuis plusieurs décennies nous ont donné une assez bonne compréhension du rôle du chaos en météorologie, en turbulence hydrodynamique faible, dans la dynamique du système solaire, et pour quelques autres systèmes relativement simples. Qu’en est-il de la biologie, de l’économie, de la finance, ou des sciences sociales ? Il faut comprendre que les modélisations utiles dans le domaine du vivant sont assez différentes de celles qui nous satisfont pour des systèmes physiques simples. Les relations du hasard et la nécessité sont d’une autre nature. En fait le domaine du vivant est caractérisé par l’homéostasie qui maintient les organismes dans des conditions appropriées à la vie. L’homéostasie tend par exemple à maintenir la température de notre corps dans d’étroites limites. Elle supprime les fluctuations thermiques et est donc de nature antichaotique. La correction des fluctuations apparaît aussi au niveau du comportement individuel : un projet de voyage est maintenu même si une panne de voiture ou une grève fortuites obligent à changer de moyen de transport. Il s’agit ici de processus correctifs compliqués et qu’il est difficile de représenter par des modèles dynamiques simples auxquels on pourrait appliquer les techniques de la théorie du chaos. Clairement, de petites causes peuvent avoir de grands effets dans la vie de tous les jours, mais aux mécanismes causateurs de chaos s’ajoutent des mécanismes correcteurs, et il est difficile de débrouiller la dynamique qui en résulte. Dans le domaine de l’économie, de la finance ou de l’histoire, on voit aussi que des causes minimes peuvent avoir des effets importants. Par exemple une fluctuation météorologique peut causer la sécheresse dans une région et livrer sa population à la famine. Mais des mécanismes régulateurs effaceront peut-être l’effet de la famine, et l’histoire poursuivra son cours majestueux. Peut-être, mais ce n’est pas certain. Une guerre obscure en Afghanistan a précipité la chute du colossal empire Soviétique. Cette guerre obscure a concouru avec de nombreuses autres causes obscures à miner un empire devenu plus instable qu’on ne le pensait. En fait nous vivons tous dans un monde globalement instable : la rapidité des transports, la transmission presque instantanée de l’information, la mondialisation de l’économie, tout cela améliore peut-être le fonctionnement de la société humaine, mais rend aussi cette société plus instable, et cela à l’échelle de la planète. Une maladie virale nouvelle, ou un virus informatique, ou une crise financière font sentir leurs effets partout et immédiatement. Aujourd’hui comme hier le futur individuel de chaque homme et chaque femme reste incertain. Mais jamais sans doute jusqu’à présent l’imprédictibilité du futur n’a affecté aussi globalement notre civilisation tout entière.

 

   VIDEO       CANAL  U         LIEN   

 
 
 
 

ARCHIMÉDE

 

 

 

 

 

 

 

Archimède

Savant de l'Antiquité (Syracuse 287 avant J.-C.-Syracuse 212 avant J.-C.).
Figure emblématique de la science grecque antique, Archimède s'est illustré à la fois par d'importantes découvertes en mathématiques et en physique et par une série d'inventions très ingénieuses.

1. ARCHIMÈDE, DISCIPLE DE L'ÉCOLE D'ALEXANDRIE
Fils de l'astronome Phidias – qui avait calculé le rapport existant entre les dimensions du Soleil et de la Lune – et peut-être apparenté à Hiéron, tyran de Syracuse, Archimède est soumis dans sa jeunesse à l'influence, alors considérable, de l'école d'Alexandrie. Il est probable qu'il va lui-même séjourner dans cette ville d'Égypte et y suivre l'enseignement du mathématicien grec Euclide et de Conon de Samos. Peut-être se rend-il aussi en Espagne, mais il revient dans sa ville natale et ne va plus la quitter.

Il y vit dans l'entourage des souverains qui le protègent et, libre de tout souci matériel, il peut se consacrer entièrement à la recherche scientifique, exerçant ses talents dans des domaines aussi divers que la géométrie, la physique et la mécanique. On ne dispose pas de témoignages directs sur sa vie, mais seulement de récits ultérieurs, dont ceux de l'historien romain Tite-Live et du Grec Plutarque.

2. ARCHIMÈDE MATHÉMATICIEN
Archimède est d'abord un géomètre. Il est le premier, dans son ouvrage Sur la mesure du cercle, à donner une méthode permettant d'obtenir une approximation aussi grande que l'on désire du chiffre π, grâce à la mesure des polygones réguliers circonscrits à un cercle ou inscrits dans celui-ci ; utilisant les polygones à 96 côtés, il fournit une valeur de π comprise entre 22/7 et 223/71.
Dans son traité Sur la sphère et le cylindre, il prouve que le volume d'une sphère vaut les deux tiers du volume du cylindre circonscrit. Il accorde même à cette découverte une importance particulière, puisqu'il demande qu'une représentation d'un cylindre circonscrit à une sphère soit gravée sur sa tombe.

Dans l'Arénaire, Archimède cherche à calculer le nombre de grains de sable contenus dans l'Univers, tel qu'il se l'imagine ; pour représenter un nombre aussi grand (de l'ordre de 1063), il perfectionne le système numéral grec, qui utilise des lettres, en faisant appel aux exposants. Il trouve les formules d'addition et de soustraction des arcs, calcule l'aire d'un segment de parabole, d'un secteur de la spirale qui porte son nom, du cylindre, de la sphère, etc. Dans son traité Sur les sphéroïdes et sur les conoïdes, il étudie les ellipsoïdes, les paraboloïdes et les hyperboloïdes de révolution. Ses recherches sur les tangentes et les quadratures l'amènent à envisager le calcul différentiel et intégral, développé deux mille ans plus tard par l'Anglais Newton et l'Allemand Leibniz.
Pour en savoir plus, voir l'article analyse [mathématiques].

3. ARCHIMÈDE PHYSICIEN
MÉCANIQUE, OPTIQUE, HYDROSTATIQUE

En physique, Archimède est le fondateur de la statique du solide, avec sa règle de la composition des forces et sa théorie du centre de gravité. Dans son premier livre, De l'équilibre des plans, il donne une théorie du levier : par abstraction, il réduit cet instrument à un segment de droite, en trois points duquel sont appliquées des forces qui s'équilibrent ; il montre, par ailleurs, que la balance n'en constitue qu'un cas particulier.
Archimède pose aussi les bases de l'hydrostatique, dans son traité Sur les corps flottants. Il indique notamment que la surface d'une eau tranquille est une portion de sphère dont le centre coïncide avec celui de la Terre.

Outre ses œuvres déjà citées, on peut signaler la Catoptrique, étude de la réflexion de la lumière, les Polyèdres, la Méthode, lettre écrite à Ératosthène, ainsi que des ouvrages aujourd'hui perdus, la Sphéropée, qui traitait de mécanique appliquée, et les Principes, dédiés à un certain Zeuxippe.
En dépit des conseils du tyran de Syracuse Hiéron, qui l'engageait à orienter son activité vers les applications, Archimède, comme les autres savants grecs de son temps, s'intéressa surtout à la recherche fondamentale. Mais, à l'inverse de ses confrères, pour qui la valeur d'une théorie se mesurait selon des critères d'esthétique, il fut le premier à faire un constant appel au contrôle de l'expérience.
Pour en savoir plus, voir l'article science.

« EURÊKA ! » : LE PRINCIPE D'ARCHIMÈDE

L'architecte romain Vitruve rapporte les curieuses circonstances dans lesquelles Archimède aurait découvert le fameux principe qui porte son nom (→ principe d'Archimède). Le roi Hiéron II avait commandé à un artisan une couronne d'or et lui avait fourni le métal précieux nécessaire. Bien que l'objet achevé présentât le même poids que l'or, Hiéron soupçonnait l'homme d'avoir substitué de l'argent à une certaine quantité de métal jaune. Il fit part de son inquiétude à Archimède, lui demandant s'il pouvait découvrir la fraude, tout en conservant la couronne intacte.

Le savant, méditant sur ce problème, fut frappé, en prenant son bain, par la diminution de poids que subissaient ses membres plongés dans l'eau. Il comprit alors que cette perte de poids équivalait au poids de l'eau déplacée. Et, dans l'enthousiasme de cette découverte, il se serait élancé nu dans la rue, en s'écriant : « Eurêka, eurêka ! » (« J'ai trouvé, j'ai trouvé ! »). En plongeant simultanément dans l'eau la couronne et un lingot d'or de même masse, maintenus à l'équilibre grâce à une balance romaine, Archimède put mesurer la différence de poids apparent entre les deux objets et prouver ainsi que l'orfèvre avait commis une supercherie.

4. ARCHIMÈDE INGÉNIEUR
LA VIS D'ARCHIMÈDE

Éminent savant, à la fois théoricien et expérimentateur, Archimède est aussi un remarquable ingénieur. L'une de ses plus célèbres inventions est la vis sans fin, appelée aussi aujourd'hui vis d'Archimède, une hélice tournant autour de son axe et qui permet de déplacer des matériaux très divers, comme de l'eau ou de la pâte à papier.
L'historien grec Diodore de Sicile raconte qu'il conçut ce dispositif pour diriger les eaux du Nil sur les terrains que les inondations ne permettaient pas d'atteindre ; il semble qu'il l'utilisa également pour assurer la propulsion d'un vaisseau commandé par Hiéron.
Archimède a aussi introduit le boulon, formé d'une vis et d'un écrou, et la roue dentée.

LA DÉFENSE DE SYRACUSE

En 215 av. J.-C., Archimède organise la défense de Syracuse, attaquée par l'armée romaine. Pendant trois ans, il tient en échec les troupes du consul romain Marcellus. Il invente des catapultes capables de projeter d'énormes blocs rocheux à de grandes distances. Il réalise aussi une machine fonctionnant au moyen de leviers et de poulies et constituée de gros crochets en fer qui, lorsqu'un vaisseau ennemi s'avance jusqu'aux fortifications de la ville, s'en saisissent et le secouent violemment jusqu'à le briser. On raconte enfin – mais cela paraît plus douteux – qu'à l'aide de miroirs plans judicieusement disposés (miroirs ardents), il serait parvenu à concentrer sur les vaisseaux ennemis la lumière solaire et à les incendier.
Cependant, les Romains ayant pénétré par surprise dans la ville, Marcellus ordonne qu'on épargne Archimède, dont il admire le génie et qu'il espère gagner à la cause de Rome. Mais le savant, absorbé par la résolution d'un problème, est tué par un soldat qui, ne l'ayant pas reconnu, s'irrite de son refus de le suivre. Marcellus lui organisera de grandes funérailles et lui fera dresser un tombeau décoré de sculptures évoquant ses travaux. En 75 av. J.-C., Cicéron, questeur en Sicile, retrouvera cette tombe, envahie par les broussailles, et la fera restaurer.

CITATIONS

Donnez-moi un point d'appui et je soulèverai la Terre !
Archimède, cité par Pappus (ive siècle)
De tous les grands hommes de l'Antiquité, Archimède est celui qui mérite le plus d'être placé à côté d'Homère.
Jean d'Alembert
Ceux qui sont en état de comprendre Archimède admirent moins les découvertes des plus grands hommes modernes.
Gottfried Wilhelm Leibniz

 

 DOCUMENT   larousse.fr    LIEN

 
 
 
 

LE SECOND DEGRÉ

 

LE  SECOND  DEGRÉ

 

            DOCUMENT         xymaths.free.fr       LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 ] - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales / Confidentialité

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google