|
|
|
|
|
|
CARTE DES SEISMES |
|
|
|
|
|
CARTE DES SEISMES
LIEN |
|
|
|
|
|
|
NANOMACHINES |
|
|
|
|
|
Paris, 5 mars 2009
Une seconde pour sonder des nanomachines moléculaires au niveau atomique
Des chercheurs de l'Institut de biologie structurale Jean-Pierre Ebel (IBS, Institut mixte CEA-CNRS-Université Joseph Fourier, Grenoble) viennent de développer une nouvelle technique, basée sur la Résonance magnétique nucléaire (RMN), permettant de réduire considérablement le temps nécessaire pour sonder, au niveau atomique, des assemblages biomoléculaires de grandes tailles. Les temps d'analyse passent ainsi de plusieurs minutes à près d'une seconde ce qui ouvre un nouveau champ de recherche dans l'étude structurale de ces assemblages. Elles devraient permettre d'observer en temps réel les changements structuraux et dynamiques au sein de nanomachines(1) moléculaires lorsqu'elles exercent leur action. Ces résultats viennent d'être publiés en ligne par la revue Journal of the American Chemical Society.
L'étude fonctionnelle et structurale des nanomachines biologiques est une tâche difficile compte tenu de la dimension des objets étudiés, de leur flexibilité et de la complexité des substrats manipulés (protéines, peptides, ADN, ARN…). Elle nécessite la combinaison de la cristallographie aux rayons X et de méthodes à « basse » résolution telles que la microscopie électronique. Ces méthodes permettent difficilement d'obtenir des informations cinétiques pourtant nécessaires pour comprendre la dynamique fonctionnelle d'un système.
La spectroscopie RMN[2] est la méthode de choix pour étudier, avec une résolution atomique, les propriétés structurales et dynamiques des macromolécules biologiques en solution. Récemment, le développement de techniques de marquages isotopiques spécifiques[3] a permis de repousser les frontières de cette méthode à l'analyse des assemblages biomoléculaires pouvant atteindre 1 méga Dalton[4]. L'utilisation de spectromètres RMN opérant à des champs magnétiques élevés a, de son côté, amélioré la résolution des observations. Cependant l'étude cinétique des modifications au sein de ces assemblages restait limitée par les temps de mesure (plusieurs minutes voire plusieurs heures) nécessaires pour repérer chaque groupe d'atomes par leurs signaux RMN spécifiques. Une autre technique nouvellement mise au point, la RMN rapide[5], permet d'accélérer l'enregistrement des spectres RMN.
Pour la première fois, les chercheurs de l'IBS ont réussi à combiner ces trois techniques, et ainsi, à réduire à près d'une seconde le temps expérimental requis pour sonder par RMN des assemblages biomoléculaires de plusieurs centaines de kilo Dalton.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
COLLISION DE GALAXIES |
|
|
|
|
|
Paris, 10 mai 2007
De la matière cachée dans les débris de collision des galaxies
En observant et en simulant sur ordinateur les débris d'une collision de deux galaxies, une équipe internationale menée par des astrophysiciens du laboratoire AIM(1) (CEA/DSM, CNRS, Université Paris Diderot), avec la participation de chercheurs du LAM(2) (CNRS, Université de Provence), a montré qu'ils contiennent de la matière cachée. Ce résultat inattendu indique que les disques galactiques eux-mêmes contiennent de la matière noire, contrairement aux hypothèses classiques des études cosmologiques. Ce résultat est à paraître dans la revue Science (publication Science Express du 10 mai 2007)
Les galaxies spirales telles que notre Voie Lactée sont formées d'un disque d'étoiles et de gaz. La vitesse de rotation anormalement rapide de ces disques indique que la masse totale des galaxies spirales est bien supérieure à la masse visible de gaz et d'étoiles : les galaxies contiennent de grandes quantités de matière cachée, dite « noire », dont la nature précise échappe encore aujourd'hui aux physiciens, mais qui selon les scénarios cosmologiques classiques résiderait dans un halo sphéroïdal étendu, plutôt que dans les disques.
Les forces mises en jeu lors des collisions de galaxies arrachent de grandes quantités de gaz et d'étoiles à leurs disques et les projettent dans le milieu intergalactique sous la forme de filaments ou d'anneaux de matière. Une équipe internationale menée au sein du Laboratoire AIM par des chercheurs du CEA(3) et du CNRS ont étudié les débris de collision d'une galaxie, NGC5291, à l'aide d'observations radios obtenues avec le Very Large Array(4) et d'un modèle numérique de la formation de ce système. Selon leurs simulations effectuées sur les super-calculateurs CEA/CCRt(5), NGC5291 était une galaxie spirale classique lorsqu'elle a été victime d'une collision violente, il y a 360 millions d'années. L'impact aurait formé un gigantesque anneau de gaz qui aujourd'hui s'étend sur près de 500 000 années-lumière, et qui s'est morcelé en de multiples condensations. Les chercheurs ont mis en évidence dans plusieurs de ces condensations des vitesses de gaz anormalement élevées, attestant d'une masse totale trois fois plus élevée que la masse visible sous forme de gaz ou d'étoiles. Ces débris de collision contiennent donc des quantités significatives de matière noire.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
MOTEURS MOLECULAIRES |
|
|
|
|
|
Paris, 4 mars 2011
Une percée dans la conception de moteurs moléculaires
Des chercheurs du CNRS et de l'Université de Bordeaux, en collaboration avec une équipe chinoise (1), ont réalisé le premier piston moléculaire capable de s'auto-assembler. Ces recherches représentent une avancée technologique significative dans la conception de moteurs moléculaires. Un tel piston pourrait, par exemple, servir à fabriquer des muscles artificiels ou à créer des polymères à la rigidité contrôlable. Ces résultats sont publiés le 4 mars 2011 dans la revue Science.
Les organismes vivants ont largement recours à des moteurs moléculaires pour remplir certaines de leurs fonctions vitales comme stocker l'énergie, permettre le transport cellulaire ou même se propulser dans le cas des bactéries. Les agencements moléculaires de ces moteurs étant extrêmement complexes, les scientifiques cherchent à créer leurs propres versions, plus simples. Le moteur développé par l'équipe internationale emmenée par Ivan Huc (2), chercheur CNRS au sein de l'Unité « Chimie et biologie des membranes et des nanoobjets » (CNRS/Université de Bordeaux), est un « piston moléculaire ». Comme un véritable piston, il est constitué d'un axe sur lequel glisse une pièce mobile, à la différence près que l'axe et la pièce ne mesurent que quelques nanomètres de long.
Plus précisément, l'axe est formé d'une molécule longiligne, tandis que la pièce mobile est une molécule en forme d'hélice (toutes deux sont des dérivés de molécules organiques spécialement synthétisés pour l'occasion). Comment le mouvement de la molécule hélicoïdale est-il possible le long de l'axe ? C'est l'acidité du milieu dans lequel baigne le moteur moléculaire qui contrôle l'avancée de l'hélice sur l'axe : en augmentant l'acidité, on pousse l'hélice vers une extrémité de l'axe, car elle possède alors une affinité pour cette portion de la molécule filiforme ; en réduisant l'acidité, on inverse le processus et l'hélice fait machine arrière.
Ce dispositif offre un avantage essentiel par rapport aux pistons moléculaires déjà existants : l'auto-assemblage. Dans les versions précédentes, qui prennent la forme d'un anneau glissant sur une tige, la pièce mobile passe mécaniquement à travers l'axe avec une extrême difficulté. A l'inverse, le nouveau piston se construit tout seul : les chercheurs ont conçu la molécule hélicoïdale spécifiquement pour qu'elle vienne s'enrouler spontanément autour de l'axe, tout en conservant une certaine liberté de mouvement ensuite pour ses déplacements latéraux.
En permettant une fabrication à grande échelle du piston moléculaire, cette faculté d'auto-assemblage laisse espérer voir fleurir rapidement des applications. Les domaines concernés sont variés : biophysique, électronique, chimie... En greffant bout à bout plusieurs pistons, on pourrait, par exemple, réaliser une version simplifiée d'un muscle artificiel, capable de se contracter sur commande. Une surface hérissée de pistons moléculaires deviendrait, à loisir, un conducteur ou un isolant électrique. Dernière idée : on peut imaginer une version grand format de l'axe sur lequel glisseraient plusieurs hélices, ce qui fournirait un polymère à la rigidité mécanique ajustable. On le voit, les possibilités de ce nouveau piston moléculaire sont (presque) infinies.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ] Précédente - Suivante |
|
|
|
|
|
|