ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

VOLCANISME ET ÉVOLUTION DE LA VIE SUR TERRE

 

Texte de la 433e de l'Université de tous les savoirs donnée le 12 juillet 2002

Vincent Courtillot,« Volcanisme et évolution de la vie sur terre »

Depuis quelques dizaines d'années, l'impact climatique que peuvent causer les éruptions volcaniques n'est plus mis en doute. Chaque fois que se produisent des éruptions riches en soufre, le climat en est légèrement modifié, la couleur du coucher de soleil change pendant plusieurs mois, la température de la basse atmosphère baisse, de quelques dixièmes de degrés, ce qui est cependant suffisant pour avoir des conséquences sur le climat. Ainsi, l'éruption du Laki en Islande, en 1783, au cours de laquelle 10 km3 de lave ont été crachés, a modifié le climat de tout l'hémisphère nord pendant plus d'une année. Les poussières volcaniques et les gaz ont causé des brouillards s'étendant, durant l'été et l'automne 1783, sur la plus grande partie de l'Europe et sur les régions adjacentes de l'Afrique et de l'Asie, causant des récoltes particulièrement maigres. Certains disent que les famines qui s'ensuivirent dans toute l'Europe et plus particulièrement en France sont un élément à considérer dans l'origine de la Révolution française en 1789.
La question est de savoir si le volcanisme que l'on peut observer à une échelle historique, récente, a toujours existé, et à la même échelle. Les informations qu'amassent, entre autres, les géologues et géophysiciens, permettent d'affirmer qu'il y a eu au cours des temps géologiques des éruptions beaucoup plus violentes. L'évolution de la Vie sur Terre en a t'elle été affectée ?

Si l'on représente (Figure 1) le nombre d'espèces différentes présentes sur terre (estimé à partir des fossiles retrouvés par les paléontologues) en fonction du temps qui s'est écoulé depuis 550 millions d'années, au début de l'ère primaire, la courbe obtenue représente l'évolution de la biodiversité au cours du temps. Au cours du Cambrien, le nombre d'espèces explose, avant de s'effondrer de manière subite il y a 250 millions d'années. La courbe remonte, mais un nouvel événement fait chuter la courbe de manière brutale il y a 65 millions d'années, à la limite entre l'ère secondaire et l'ère tertiaire. C'est à ce moment que disparaissent, entre autres, les dinosaures. Après cette catastrophe, la vie repart de nouveau : elle est aujourd'hui plus diverse qu'elle ne l'a jamais été depuis 600 millions d'années.
La pente de cette courbe (Figure 1) représente le nombre d'espèces qui disparaissent par unité de temps, c'est-à-dire l'intensité des extinctions. Sans cesse, des espèces s'éteignent et d'autres apparaissent, ce qui fait partie du processus normal de l'évolution. Il y a cependant quelques moments particuliers durant lesquels les taux d'extinctions sont énormes : ce sont les grandes extinctions en masse. La plus sévère a eu lieu il y 250 millions d'années, elle définit la limite entre l'ère primaire et l'ère secondaire : 95 % des espèces et peut être 99 % des organismes vivants ont disparu en guère plus d'un million d'année. Ces extinctions sont bien recensées, de la plus ancienne il y a 440 millions d'années (à la limite Ordovicien/Silurien), à la plus récente, il y a 65 millions d'années (à la limite Crétacé/Tertiaire). Les causes de ces événements cataclysmiques sont toujours débattues, et plus particulièrement la raison de l'extinction à la limite Crétacé/Tertiaire. Deux grandes familles d'hypothèses sont avancées depuis quelques dizaines d'années. La théorie la plus connue est celle selon laquelle les dinosaures auraient succombé à la collision entre la terre et un astéroïde. La deuxième hypothèse attribue l'extinction des espèces aux gaz, aux aérosols, et aux poussières libérés (Figure 3) lors d'éruptions volcaniques gigantesques. Quelle hypothèse paraît aujourd'hui la plus valable ? Elle ne peut être validée que si elle peut donner lieu à des « prévisions », puis à des vérifications par l'observation sur le terrain ou l'expérimentation.

Vers la fin des années 1970, un géologue américain, Walter Alvarez, ramasse à Gubbio, en Italie, des échantillons de calcaire, et remarque une couche noirâtre d'argile, dans laquelle il ne retrouve aucune trace de vie. Il se rend compte que les espèces de foraminifères (des protozoaires marins) présentes sous cette couche sont typiques de l'ère secondaire, et ne sont pas retrouvées au dessus de la strate d'argile, au delà de laquelle on trouve d'autres espèces. La grande majorité des espèces n'a donc pas survécu à la période à laquelle s'est déposée la couche d'argile. Il est apparu par la suite que cette couche d'argile, retrouvée un peu partout sur la Terre, contenait en proportion importante de l'iridium, un métal extrêmement rare dans la croûte terrestre, mais présent dans les météorites. L'analyse des roches au microscope a montré des grains de quartz présentant des rayures noires caractéristiques d'une onde de choc telle qu'aurait pu en provoquer l'impact d'une météorite. La rareté de l'occurrence de ces observations a conduit Walter Alvarez à la conclusion qu'une météorite avait frappé la terre il y a 65 millions d'années. La trace du cratère de cet impact a été retrouvée à l'aide de l'étude des anomalies de pesanteur sous 3 km de sédiments dans la péninsule du Yucatan au Mexique. Son diamètre est d'environ 180 km. A titre de comparaison, le plus grand cratère observable à l'heure actuelle sur Terre, le Meteor Crater, ne fait qu'un peu plus de 1 Km de diamètre : il a été creusé il y a 20 000 ans par une météorite d'une centaine de mètres de diamètre. Le cratère du Mexique a été daté à 65 millions d'années. C'est sur la base de ces observations indiscutables que les scientifiques considèrent comme démontrée l'hypothèse de la météorite. Cependant, le lien entre l'impact et l'extinction en masse n'est pas complètement établi, et ce pour plusieurs raisons.

Il est tout d'abord difficile d'enregistrer une extinction, et de déchiffrer les informations que les roches fournissent. Les sédiments, qui sont une des sources d'information, ne se déposent pas en continuité et peuvent même être absents en certains endroits (lacunes). Les phénomènes de bio-turbation (dus à des animaux fouisseurs) ou l'érosion peuvent perturber ou détruire le signal. Enfin, la fossilisation d'un être vivant est un événement extrêmement rare, donc il n'est jamais sûr que le dernier fossile trouvé soit contemporain de l'extinction de l'espèce. La lecture d'un enregistrement fossile est donc un travail difficile. Une extinction graduelle peut ainsi, si l'on n'y prend garde, passer pour une extinction massive, et inversement, du fait des caprices de l'enregistrement sédimentaire.
Des enregistrements de l'extinction Crétacé/Tertiaire observés au Texas et en Tunisie tendent à prouver que des extinctions se produisaient déjà quelques dizaines ou centaines de milliers d'années avant l'impact de la météorite. Comment expliquer cela ?
Une solution a pu être trouvée en allant chercher en Inde. On y trouve les traps du Deccan (Figure 2), une immense extension de plus de 500 000 km2 de laves basaltiques réparties en couches qui s'étendent sur des dizaines, voire de centaines de kilomètres, chacune faisant des dizaines, voire une centaine de mètres d'épaisseur. Il s'agit donc de coulées volcaniques dont le volume est étonnant : pour certaines plus de 1 000 km3, ce qui est à comparer avec les 10 km3 de la coulée de lave de 1783 en Islande, la plus grosse de mémoire humaine. Connaissant l'impact de cette éruption islandaise, il parait raisonnable d'imaginer que la séquence des énormes coulées du Deccan ait eu des conséquences climatiques significatives. La question qui se pose est de savoir de quand datent ces basaltes. Cette datation a représenté une grande partie du travail de plusieurs équipes entre 1985 et 1990. Les résultats obtenus à l'aide de trois méthodes de datation (l'une utilisant des éléments radioactifs (méthode sSur de la méthode au carbone 14), l'une basée sur la mémoire magnétique des roches et la troisième sur l'observation des fossiles) ont permis d'établir que ces traps ont 65 millions d'années.
On a pu ainsi évaluer la durée d'éruption des traps du Deccan. En premier lieu, cinq âges obtenus sur mille mètres d'épaisseur de lave sont séparés par un écart plus faible que la précision de la méthode de mesure, ce qui permet d'affirmer que ces laves se sont mises en place en très peu de temps. Par ailleurs, il est établi que le champ magnétique de la terre ne cesse de s'inverser. Pourtant, les mesures de la polarité magnétique de laves qui s'étendent sur deux mille mètres d'épaisseur montrent que le champ magnétique terrestre ne s'est inversé que deux fois pendant les éruptions. Cette observation démontre que le phénomène de mise en place des coulées a été très rapide. Enfin, la découverte de fossiles à la base des traps, mais aussi entre les différentes coulées (ce qui signifie que des lacs se sont mis en place entre des événements volcaniques, permettant ainsi la fossilisation des animaux) montre que le volcanisme a débuté à la toute fin de l'ère Secondaire. Les trois types d'observation amènent à dire que les traps du Deccan se sont mis en place il y a 65 millions d'années, en moins d'un million d'années et peut être même en une phase paroxysmale de quelques centaines de milliers d'années seulement, pendant la période qui a connu l'extinction Crétacé/Tertiaire. La limite de la précision, de l'ordre de quelques centaines de milliers d'années, ne peut être dépassée, car elle est imposée par la stratigraphie, la paléontologie et la géochronologie.
Cependant, la découverte de la couche d'iridium (témoin d'un phénomène qui avait lieu de l'autre coté du globe !) dans une couche sédimentaire entre deux coulées de laves dans la province du Kutch a permis d'établir avec certitude que le volcanisme était déjà en cours lorsque la météorite s'est écrasée sur Terre. Cet impact ne peut donc pas avoir déclenché les événements volcaniques.
Les traps du Deccan sont un événement volcanique d'une intensité exceptionnelle, comme il ne s'en est produit aucun depuis une trentaine de millions d'années sur Terre. Il paraît raisonnable d'imaginer que ces éruptions ont pu avoir un impact climatique. La recherche progresse beaucoup dans le domaine et permet d'avoir une idée de la manière dont ces éruptions peuvent altérer la biosphère et donc perturber la végétation et les chaînes trophiques (de nourriture) des animaux inférieurs vers les animaux supérieurs. L'émission de gaz sulfureux conduit à un refroidissement rapide de l'atmosphère, celle de gaz carbonique à un réchauffement global du à l'effet de serre ; de manière paradoxale, le gaz carbonique est ensuite absorbé par l'altération des laves et une période de refroidissement s'ensuit. L'érosion est accélérée par les pluies acides, des périodes de glaciation, de stagnation des océans et donc d'appauvrissement en oxygène (anoxie, dont la trace stratigraphique peut être retrouvée) se succèdent. Tous ces phénomènes peuvent conduire à des extinctions en masse aussi bien dans le domaine continental, terrestre, que dans le domaine marin.

Si la théorie d'une relation causale entre événements volcaniques massifs et extinctions en masse est juste, elle doit pouvoir être validée par d'autres exemples. Puisque ce sont les extinctions qui ont permis aux géologues de tracer les frontières entre les âges de l'échelle géologique, cela signifierait alors que ces limites marqueraient les âges des grandes catastrophes volcaniques. L'échelle de la vie sur terre deviendrait du même coup l'échelle de la dynamique du globe.
Les traps existants ont été répertoriés (Figure 4). Une dizaine seulement sont détectables à la surface de la terre : les traps du Deccan en Inde, les traps d'Ethiopie, ceux de la province du Karoo en Afrique du Sud, du Parana au Brésil, et ceux présents en Sibérie et au Groenland. De manière générale, ce qui a été découvert pour les traps du Deccan est aussi valable pour les autres.
A l'époque de la Pangée, il y a deux cents millions d'années, une immense province volcanique s'est formée, qui va précéder la naissance de l'océan Atlantique. Les laves étant très anciennes, elles ont été érodées, mais les fissures qui ont servi à alimenter ces coulées (les dykes, qui ont quelques dizaines ou centaines de kilomètres) ont été retrouvées en Amérique du Nord, en Afrique, au Nord-est de l Amérique du Sud et en Europe. Ces dykes datent de 200 millions d'années, ce qui correspond à la limite Trias/Jurassique et coïncide avec la deuxième plus vieille extinction en masse (Figure 1). La durée totale d'émission des laves a pu être évaluée de manière plus précise que pour les traps du Deccan : elle aurait duré moins de 600 000 ans.
Il y a 250 millions d'années se produit l'une des plus grandes éruptions volcaniques de tous les temps à l'endroit où se trouve aujourd'hui la Sibérie. Ces traps de Sibérie sont très riches en minéraux, associés à la mise en place du volcanisme. Partout où leur âge a pu être mesuré, ces roches ont été datées à 250 millions d'années, ce qui correspond bien à la plus grande extinction de tous les temps, la limite entre l'ère Primaire et l'ère Secondaire. Cependant, si l'on regarde en détail la diversité biologique en fonction du temps autour de cette limite, il apparaît déjà une extinction sérieuse à la fin du Guadaloupien : l'extinction répertoriée à la fin de l'ère Primaire semble donc être en réalité composée de deux extinctions massives, séparées d'environ 8 millions d'années. Il a d'ailleurs été noté que le niveau des mers avait brusquement baissé deux fois à ces deux moments. Si la théorie des traps a une valeur générale, un trap datant de 258 millions d'années devrait avoir existé. Cette « prédiction » a été proposée il y a huit ans, alors qu'aucun trap de cet âge n'était connu. Depuis, des traps ont été découverts à la frontière entre la Chine du Sud et le Vietnam. Ces traps n'avaient pas été détectés auparavant car depuis leur formation l'Inde est entrée en collision avec l'Asie, et les traps ont été en grande partie détruits. La méthode de datation à l'uranium et au plomb sur silicates de zirconium a permis d'établir leur âge à 259 millions d'années (à trois millions d'années près). Il existe donc quatre traps dont l'âge corrèle avec les quatre dernières grandes extinctions en masse.
D'autres échantillonnages sur les traps de Sibérie sont en cours, plus à l'ouest en collaboration des confrères russes. Des formations géologiques très particulières s'y trouvent, les pipes de kimberlite, qui sont des cheminées volcaniques produisant des laves très particulières auxquelles sont associées des diamants. Des mesures de paléomagnétisme (la direction magnétique fossilisée dans ces laves) ont permis de montrer qu'il y avait là deux groupes de roches d'âges différents. L'un correspond parfaitement aux traps de Sibérie, tant sur le plan de la direction magnétique que sur le plan de l'âge (250 millions d'années), et ces laves correspondent donc aux premières phases volcaniques de ces traps. L'autre groupe de roche a une direction magnétique très différente, et l'âge en serait de 350 à 370 millions d'années. Or, il y a 360 millions d'années se produisait une autre grande extinction en masse, à la limite Frasnien/Famménien, dont personne ne connaît encore la cause. Nous avons donc peut être trouvé sous les traps de Sibérie les derniers restes d'un trap qui se serait produit 110 millions d'années plus tôt, et qui serait la cause de cette extinction.
Les traps les plus jeunes, ceux d'Ethiopie, ont été datés à 30 millions d'années, avec une durée de mise en place inférieure à 800 000 ans. Les cendres de ces éruptions ont été retrouvées à des milliers de kilomètres de là dans l'océan Indien, lorsqu'on y a fait des forages. Les traps d'Ethiopie correspondent à un épisode majeur d'avancée des glaces, à une chute du niveau des mers, à un épisode d'aridité et à une baisse de la diversité des mammifères, donc à un phénomène bio-climatique significatif.

Dans l'état actuel des connaissances, la corrélation entre impacts de météorites et extinctions massives n'a été vérifiée, après vingt ans de recherche, qu'une seule fois, dans le cas du cratère du Mexique. Les âges des autres cratères qui ont été trouvés ne corrèlent en effet pas bien avec les limites entre les âges géologiques. En revanche, la correspondance entre l'âge d'un trap et celui d'une extinction massive (Figure 5) a été vérifiée dans huit cas, sans compter celui qui est en cours d'expertise.
La réalité de l'impact d'une météorite il y a 65 millions d'années n'est pas à remettre en cause. Cependant les arguments développés plus haut tendent à prouver que ce phénomène s'est produit dans un monde déjà stressé depuis plus de 200 000 ans par des éruptions volcaniques d'une ampleur colossale. Il existe huit autres exemples permettant d'affirmer que ce genre de phénomène peut provoquer une extinction massive. Il paraît donc raisonnable d'attribuer aux éruptions les extinctions survenues avant l'impact météoritique. Ce dernier a peut être causé d'un coup les deux tiers des extinctions, mais cela n'aurait pas pu advenir si la biosphère n'avait déjà été fragilisée.
En conclusion, si la corrélation entre les traps enfouis en Sibérie et la limite Frasnien/Famménien est validée, le modèle proposant de voir dans les grands événements volcaniques la cause des extinctions massives serait vérifié depuis 400 millions d'années. Un modèle qui pourrait bien servir aux climatologues qui tentent de prédire les effets des modifications que l'Homme impose à l'atmosphère.

 

VIDEO           CANAL  U               LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

LA COÉVOLUTION

 

Texte de la 7ème conférence de l'Université de tous les savoirs réalisée le 7 janvier 2000 par Claude Combes

"La coévolution"

Qu'est que la coévolution?

Les virus informatiques sont de plus en plus élaborés.
Les anti-virus sont de plus en plus complexes.
Telle est l'image moderne que l'on peut donner de la coévolution. Les virus informatiques deviennent de plus en plus élaborés parce que les logiciels anti-virus existent, et ces derniers se renouvellent sans cesse parce que des virus plus performants sont mis en circulation.
La coévolution, c'est le processus sans fin dans lequel deux adversaires construisent sans cesse de nouvelles armes pour ne pas être distancé par "l'autre".

Les pathogènes et leurs hôtes: un conflit sans merci

Un pathogène, qu'il s'agisse du virus de la grippe ou du pou des écoliers est un être vivant qui utilise un autre organisme vivant, l'hôte, à la fois comme habitat et comme source d'énergie. Très souvent, l'association entre le pathogène et l'hôte est caractérisée par une étroite spécificité: un pathogène donné a "son " hôte ou un petit nombre d'hôtes apparentés.
Pour l'étude de la coévolution, une notion est importante, celle de succès reproductif, que la littérature anglo-saxonne qualifie du mot évocateur de "fitness". Dans une association pathogène-hôte, la fitness du parasite augmente si la sélection naturelle lui permet de mieux exploiter l'hôte, tandis que l'hôte augmente la sienne si la sélection lui permet de mieux lutter contre l'infection.
On devine dès lors que toutes les conditions sont réunies pour une coévolution. Aux "armes" inventées par le pathogène répondent les "armes" inventées par l'hôte. Bien entendu, derrière le mot arme, il faut entendre des adaptations (comportementales, physiologiques, moléculaires) et derrière le mot "inventées", il faut entendre les choix de la sélection naturelle dans la variabilité génétique issue des mutations. Dans un tel conflit, où la coévolution oppose deux adversaires aux intérêts totalement divergents, les biologistes parlent couramment de courses aux armements, par comparaison avec deux pays rivaux qui maintiendraient un fragile équilibre, chacun inventant régulièrement de nouvelles armes capables de s'opposer aux initiatives de l'autre.
Dans les associations pathogènes-hôtes, les courses aux armements se font à deux niveaux successifs.
Les gènes qui permettent au pathogène de rencontrer son hôte avec une plus grande probabilité sont tout d'abord sélectionnés. Est sélectionné en réponse chez l'hôte tout gène qui lui permet d'éviter la rencontre avec le pathogène.
Les gènes qui permettent à l'hôte de détruire le pathogène, notamment par l'immunité, sont sélectionnés. Est sélectionné en réponse chez le pathogène tout gène qui lui permet de survivre dans le milieu hostile ainsi créé.
On devine que cette coévolution peut durer longtemps& C'est probablement pourquoi il existe autant de pathogènes et pourquoi il en existera vraisemblablement toujours. Cette coévolution ne diffère en rien de celles qui opposent les prédateurs à leurs proies: les chats ont d'excellentes adaptations pour attraper les souris, mais comme les souris ont d'excellentes adaptations pour éviter les chats, il existe toujours à la fois des chats et des souris. Les enfants savent bien que Jerry sait prendre les bonnes décisions qui font échouer les projets diaboliques et sans cesse renouvelés de Tom& Walt Disney a illustré la coévolution sans s'en douter.

Les orchidées et les papillons: un conflit quand même&

L'association formée par certaines orchidées de Madagascar et leurs papillons pollinisateurs n'entre plus dans le domaine du parasitisme mais dans celui du mutualisme. Quelle est la différence? Si, dans le parasitisme, l'un des partenaires de l'association exploite l'autre, dans le mutualisme, l'exploitation est réciproque. En d'autres termes, il y a toujours un pathogène et un hôte, mais ce dernier trouve un avantage à être colonisé par le pathogène&
De nombreuses espèces d'orchidées possèdent des pollinies, petites masses collantes contenant les grains de pollen, et des tubes cylindriques (nectaires) qui sécrètent un nectar sucré. Des papillons viennent boire le nectar à laide de leur trompe. Pour ce faire, ils heurtent la base des pollinies et celles-ci adhèrent à leur tête. Au cours de leurs repas successifs de nectar, les papillons transportent ainsi les pollinies d'une fleur à une autre, ce qui permet la fécondation des orchidées. Cependant, pour que les pollinies se collent sur la tête du papillon, il faut que la tête de celui-ci heurte les pollinies placées au dessus du nectaire avec une certaine force. Si l'accès au nectar est trop facile, le papillon ingurgite du nectar mais repart sans pollinies. Par conséquent, seules les plantes à nectaires longs, qui contraignent l'insecte à heurter la base des pollinies pour atteindre le nectar, se reproduisent: le caractère "nectaire long" est favorisé par la sélection. Parallèlement, celle-ci favorise chez le papillon le caractère "trompe longue", puisque les papillons à trompe courte n'atteignent pas le précieux nectar et, mal nourris, ne se reproduisent pas normalement. Un tel processus coévolutif a abouti à des orchidées aux nectaires interminables et à des papillons à la trompe démesurée. Par exemple, l'orchidée Angraecum sesquipedale a des nectaires de 28 à 32 cm de long et le papillon Xanthopan morgani qui la pollinise une trompe de plus de 25 cm.
On voit bien que le fait que l'association soit de type mutualiste et non parasitaire n'empêche pas qu'il y ait coévolution. L'explication est que tout être vivant est fondamentalement égoïste et n'a d'autre "objectif" que de transmettre ses gènes à la génération suivante. La collaboration entre le papillon et l'orchidée n'a rien d'un processus altruiste, même si elle donne l'image d'une entente parfaite.

La Reine Rouge de Lewis Carroll

Une question cruciale est celle du rôle de la coévolution dans le phénomène grandiose de l'Evolution elle-même (avec un "grand E"). La coévolution n'est-elle qu'un fait quelque peu anecdotique, propre à illustrer de belles histoires du monde vivant, ou est-elle au contraire un mécanisme fondamental?
Pour Leigh Van Valen, de l'Université de Chicago, le moteur principal de l'évolution de toute espèce vivante est représenté par les autres espèces avec lesquelles elle partage des ressources. Tout progrès dans la valeur adaptative d'une espèce quelconque modifie l'environnement des espèces qui l'entourent et les oblige à s'adapter. Cette adaptation provoque à son tour un changement dans l'environnement de la première espèce, ce qui la pousse à un nouvel épisode de sélection, et ainsi de suite. Cela se produit parce que les ressources sont limitées. Van Valen dit que les espèces jouent un "jeu à somme nulle" et a baptisé cette proposition du nom d'hypothèse de la Reine Rouge.
Lexpression "Reine Rouge" est empruntée à la nouvelle de Lewis Caroll "A travers le miroir", dans laquelle Alice tient la Reine Rouge par la main et court avec elle au pays des Merveilles. Alice, constatant avec surprise que le paysage autour d'elles ne change pas, interroge la Reine. Cette dernière répond qu'elles courent pour rester sur place et que c'est pourquoi le paysage paraît immobile. Les choses sont comparables dans les coévolutions: les espèces en conflit courent, c'est à dire "inventent" sans cesse de nouvelles adaptations, mais la qualité intrinsèque de chacune ne change pas. Le processus est d'autant plus marqué que deux espèces (ou un petit nombre d'espèces) forment une association "fidèle" dans le temps, compté en millions ou dizaines de millions d'années. Chaque fois que l'une d'elles acquiert par sélection un avantage quelconque, cet avantage modifie l'environnement des autres et les oblige à acquérir à leur tour par sélection des avantages compensateurs. Matt Ridley a écrit de manière imagée que, dans la vie, tout progrès n'est que relatif&
L'hypothèse de la Reine Rouge présente l'avantage d'expliquer l'accroissement ininterrompu de la complexité qui, en 3, 5 milliards d'années, a conduit l'être vivant de l'état de molécule à celui d'Homo sapiens. Si l'hypothèse est exacte, l'évolution, & c'est les autres. Accorder crédit à la "Reine Rouge" n'implique en aucune manière que les grands évènements physiques qui ont affecté la planète (émergence des terres, dérive des continents, grandes éruptions volcaniques, fluctuations climatiques, etc.) n'aient pas joué un rôle essentiel à certains moments de l'évolution, donnant à celle-ci un caractère bien moins "gradualiste" qu'on ne le croyait vers le milieu du XXème siècle.

La coévolution génome-culture

Avec l'apparition des hommes sur la Terre s'est installée une forme entièrement nouvelle de coévolution, non plus entre des espèces vivantes mais entre deux processus. On la qualifie de coévolution culture-génome.
Comme le notent Marcus Feldman, de l'Université de Stanford et Kevin Laland, de l'Université de Cambridge, aussitôt que les hommes ont su construire des outils de pierre, la compétence acquise dans cet exercice a pu être transmise de génération en génération, par un processus culturel et non plus génétique. Curieusement, les changements culturels chez les humains donnent raison à Lamarck: en matière de culture, il y a transmission des caractères acquis, qu'ils soient matériels, spirituels ou cognitifs.
On parle de coévolution culture-génome parce que, par leurs traditions culturelles, transmises d'une génération à la suivante, les hommes ont influencé de plus en plus fortement la sélection naturelle de l'information génétique.
On cite le plus souvent l'invention de l'agriculture. Celle-ci a permis que de petites inégalités initiales entre les individus se traduisent par la possession des terres et l'accumulation des richesses. Des inégalités de plus en plus grandes se sont manifestées et de là sont nés les royaumes, les empires et les féodalités& Ces bouleversements dans les "hiérarchies" entre les humains ont fortement perturbé la transmission des gènes. Matt Ridley montre que le "pouvoir" a été, jusqu'à une date très récente, associé à la production du grand nombre possible de descendants. Il cite l'empereur chinois Fei-Ti (5ème siècle après JC, dynastie Nan) et ses 10.000 concubines, et bien d'autres exemples. Laura Berzig rapporte que les empereurs de la dynastie Tang (7 et 8ème siècles après JC) allaient jusqu'à faire tenir un agenda détaillé des dates de menstruation de leurs concubines afin de ne pas gaspiller leur sperme& D'autres pratiques culturelles modifient les caractères génétiques des populations humaines. Tel est le cas de l'infanticide traditionnel qui déséquilibre la proportion des sexes. Quant aux progrès modernes de la médecine, ils contrarient certainement la sélection des gènes de résistance aux maladies. Même l'invention des lunettes doit avoir pour conséquence logique de laisser les gènes de myopie se répandre en toute liberté.
On peut enfin se demander si l'affaiblissement croissant de la structure familiale dans les sociétés occidentales ne relève pas d'un processus de coévolution culture-génome. L'accélération des acquisitions culturelles est telle que les parents ne peuvent transmettre à leurs enfants que des concepts démodés, de telle sorte que les enfants enrichissent davantage leurs connaissances par des mécanismes horizontaux (auprès d'individus de la même génération) que par des mécanismes verticaux (auprès d'individus des générations précédentes). Grand-père et grand-mère ont perdu leur pouvoir& Est-il utile enfin de dire que les interventions directes sur le génome humain, qui se feront au troisième millénaire, relègueront les processus naturels au rang d'accessoires obsolètes. Il reste à espérer qu'elles se feront seulement à des fins thérapeutiques, notamment pour lutter contre les maladies génétiques.
Les exemples qui précèdent démontrent que, si l'évolution des génomes dans la lignée des hominidés a conduit à l'émergence du cerveau de l'homme moderne et par conséquent à celle de la culture, celle-ci a profondément modifié à son tour les pressions sélectives s'exerçant sur les génomes. Terme paradoxal de cette évolution à l'aube du 3ème millénaire, les différentes cultures nées dans des entités géographiques autrefois cloisonnées ont bien plus tendance à se heurter dans un processus "darwinien" d'exclusion compétitive qu'à s'enrichir mutuellement. Si un processus de Reine Rouge s'installait entre elles, elles pourraient survivre les unes et les autres en s'enrichissant. Si au contraire la compétition pure et simple l'emporte, une seule culture dominante subsistera.

 

VIDEO             CANAL  U            LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

LE CYCLE DE L'EAU

 

LE CYCLE DE L'EAU ET L'ADÉQUATION BESOIN-RESSOURCES AU 21ÈME SIÈCLE


"Le cycle de l'eau, alimenté en énergie par la "" machine "" thermique solaire, fait s'évaporer l'eau depuis les continents et les océans, la fait transiter quelques jours dans l'atmosphère, puis retomber en pluie. On donnera les chiffres principaux des volumes d'eau annuels parcourant ce cycle, et les volumes d'écoulement associés. On évoquera aussi l'origine des eaux, dans l'histoire de la terre. On abordera les évolutions possibles de flux annuels sous l'effet des changements climatiques, et leur répartition sur le globe. On parlera ensuite de l'utilisation des eaux par les écosystèmes et par les sociétés humaines, et les évolutions probables des besoins, en fonction de leur nature (alimentation en eau potable, agriculture, industrie). On évoquera alors les difficultés potentielles de satisfaire la demande, et les solutions possibles en fonction des besoins et des coûts. Pour conclure, le problème des crues sera brièvement abordé. "

 

VIDEO            CANAL  U               LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

LA PHYSIQUE À L'ÉCHELLE DE LA CELLULE

 

LA PHYSIQUE À L'ÉCHELLE DE LA CELLULE


L'étude physique de phénomènes cellulaires a commencé à voir le jour il y a une quinzaine d'années grâce à l'essor considérable de la biologie cellulaire et grâce aux développements spectaculaires de la biologie moléculaire (l'ADN) et de la biochimie (les protéines). Les molécules que renferment nos cellules sont de mieux en mieux connues, et ont des propriétés d'auto-organisation qui sont impliquées dans deux mécanismes très importants de la vie d'une cellule : sa division et son mouvement. C'est à une échelle intermédiaire, située entre celle de la molécule, et celle de la cellule entière qu'on s'intéresse ici. Nos cellules se déplacent grâce à une mécanique interne sophistiquée : en poussant leur membrane par l'intérieur à certains endroits, elles se déforment, et se mettent en mouvement en adhérant sur les parois extérieures. L'énergie chimique qui assemble et organise les molécules lors de ce processus est ainsi transformée en énergie mécanique. Certaines bactéries se déplacent à l'intérieur de la cellule en utilisant le même type de machinerie. Je montrerai qu'on est capable de copier en laboratoire leur mouvement, et d'extraire des expériences les lois physiques qui régissent leur déplacement. Je montrerai également que ces systèmes expérimentaux épurés sont utilisés pour l'étude biochimique de l'assemblage des molécules impliquées.

 

VIDEO           CANAL  U              LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google