|
|
|
|
|
|
ATTOSECONDE |
|
|
|
|
|
Paris, 28 novembre 2012
Le "phare" attoseconde : une méthode simple pour générer des impulsions ultra-brèves uniques
La dynamique des électrons au sein des atomes et des molécules est extrêmement rapide (ordre de grandeur : l'attoseconde, soit 10-18 s). Un moyen d'étudier ces phénomènes consiste à utiliser des impulsions de lumière ultra-brèves, uniques et bien caractérisées à cette échelle de temps. Grâce à la démonstration réalisée par les chercheurs du CEA-IRAMIS1 et du Laboratoire d'Optique Appliquée (CNRS/ENSTA-Paris Tech/École polytechnique), il est possible de disposer aujourd'hui d'une source de lumière particulièrement bien adaptée pour de telles recherches sur le comportement de la matière. Ces résultats sont publiés dans Nature Photonics, le 1er décembre 2012.
L'observation de la dynamique électronique extrêmement rapide au cœur des atomes ou des molécules nécessite l'utilisation d'impulsions dans le domaine attoseconde, permettant de réaliser des expériences de type « pompe-sonde », où une première impulsion vient exciter le système, et une seconde observer l'effet de cette excitation, après un délai variable.
La méthode actuelle et ses limites
De telles impulsions ne peuvent être générées par les technologies usuelles de l'optique laser. Le seul moyen démontré à ce jour pour atteindre d'aussi courtes durées, utilise l'interaction d'impulsions laser femtosecondes (10-15 s) ultra-intenses avec la matière : en interagissant avec la cible, cette impulsion se déforme, ce qui permet d'obtenir une succession d'impulsions de quelques dizaines d'attosecondes chacune (fig.1). Ces impulsions temporellement très proches, sont difficilement exploitables pour des expérimentations, et depuis une dizaine d'années, différentes méthodes ont été proposées pour extraire une impulsion attoseconde unique.
L'innovation apportée par l'étude
Pour produire des impulsions attoseconde isolées, la nouvelle idée des scientifiques, plus simple et plus facilement exploitable, a été de disperser spatialement la succession d'impulsions, à la manière du faisceau de lumière d'un phare. L'émission de chaque impulsion attoseconde se produit ainsi dans une direction légèrement différente, permettant d'obtenir une série d'impulsions attoseconde bien distinctes par leur direction de propagation.
Loin de la cible solide, les impulsions attoseconde successives sont bien distinctes et leur espacement de plusieurs millimètres, permet de les isoler les unes des autres.
Le principe de cette nouvelle approche, proposé initialement par l'équipe de l'IRAMIS, a d'abord été validé théoriquement par des simulations numériques, réalisées avec les moyens de calcul du GENCI (Grand équipement national de calcul intensif). La démonstration expérimentale a ensuite été effectuée au Laboratoire d'Optique Appliquée (École polytechnique-CNRS-ENSTA-ParisTech) sur une chaîne laser délivrant des impulsions proches du cycle optique à très haute cadence, grâce à une très étroite collaboration entre les deux laboratoires.
L'effet observé ouvre de nouvelles perspectives pour la jeune science attoseconde, en plein développement depuis 10 ans. En permettant d'obtenir, à partir d'une seule impulsion laser, plusieurs impulsions attoseconde isolées, sous forme de faisceaux bien séparés angulairement et parfaitement synchrones, les « phares » attoseconde constituent des sources de lumière idéales pour de futures expériences pompe-sonde visant à étudier la dynamique électronique dans la matière.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
UN NOUVEAU CAPTEUR |
|
|
|
|
|
Paris, 08 novembre 2012
Un nouveau concept de capteur pour détecter des molécules d'intérêt médical et agroalimentaire
L'agroalimentaire et la médecine sont toujours à la recherche de méthodes plus efficaces pour détecter des biomolécules. Pour répondre à ces besoins, un nouveau concept de capteurs miniaturisés vient d'être mis au point par des chercheurs du LAAS-CNRS et de l'Université Toulouse III - Paul Sabatier, en collaboration avec la société HEMODIA spécialisée dans le développement de dispositifs médicaux. Ces capteurs peuvent mesurer dans une solution la concentration d'une gamme de molécules telles que le glucose, le lactate ou le glutamate pouvant servir à établir des diagnostics médicaux ou présentant un intérêt pour l'industrie agroalimentaire. Ce dispositif, appelé ElecFET, associe, pour la première fois, un microcapteur d'acidité et une microélectrode métallique présentant sur sa surface une enzyme spécifique à la molécule recherchée. L'avancée technologique est liée à l'imbrication de ces deux composants à l'échelle micrométrique sur une puce électronique en silicium. Ces travaux sont publiés le 08 novembre 2012 dans la revue Biosensors & Bioelectronics.
L'ElecFET (transistor électrochimique à effet de champ) repose sur une réaction chimique entre la biomolécule recherchée et une enzyme de la famille des oxydases capable de la dégrader. La surface de la microélectrode du dispositif présente une couche enzymatique spécifique de la molécule recherchée. Lorsque la molécule s'approche de l'électrode, l'enzyme la capture et la dégrade. Cette réaction produit du peroxyde d'hydrogène, mieux connu sous le nom d'eau oxygénée (H2O2). Le peroxyde est alors oxydé sur l'électrode grâce à une polarisation électrique adaptée, ce qui libère des ions hydroniums H3O+ et entraine une augmentation de l'acidité au voisinage de l'électrode. C'est ce pic d'acidité que le microcapteur de pH associé au dispositif détecte. Ainsi, en fonction de la chute de pH mesurée, l'ElecFET détermine la concentration de la molécule étudiée.
Au-delà du concept innovateur, l'ElecFET constitue une avancée technologique car elle permet, dans un volume extrêmement restreint (inférieur au microlitre), de dégrader la molécule recherchée, de contrôler l'oxydation du peroxyde ainsi produit et de mesurer la variation locale de pH associée. En cela, il est nécessaire que l'imbrication de l'électrode et du capteur pH se fasse à l'échelle micrométrique. Ces deux composants sont finalement intégrés sur une puce silicium, ce qui rend le dispositif compatible avec les technologies de la microélectronique.
L'ElecFET permet de détecter des molécules dans différentes gammes de concentration qui vont de la micromole à la mole par litre (1). L'avantage de ce système par rapport aux technologies actuelles est lié au contrôle potentiel de la réaction: en modifiant la polarisation de la microélectrode, il est possible de changer la gamme de détection du dispositif, et de pallier ainsi à une possible trop faible activité de l'enzyme utilisé. Testé par les chercheurs pour la détection du glucose, du lactate et du glutamate, le dispositif ElecFET a démontré une précision de mesure comparable à celle des technologies actuelles.
De nombreuses applications en médecine et dans l'agroalimentaire sont envisageables avec l'ElecFET. Par exemple, connaître la concentration en glucose dans le sang, ce qui est vital pour les patients diabétiques. Le lactate, que l'on retrouve dans la sueur, est un marqueur du stress physiologique qui décrit, par exemple, l'état de fatigue d'un sportif. Le glutamate est un neurotransmetteur excitateur du système nerveux central dont l'analyse en continu est nécessaire pour le diagnostic de différents désordres neurologiques tels que la maladie d'Alzheimer. Sur le plan de l'agroalimentaire, le lactate est un marqueur de tous les procédés basés sur la fermentation lactique, tandis que le glutamate est un vecteur du goût umami (2). L'éventail de molécules détectées par l'ElecFET pourrait finalement être élargi à l'ensemble des enzymes de la famille des oxydases, ouvrant de nombreuses potentialités d'application.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
LE NOYAU ATOMIQUE |
|
|
|
|
|
Paris, 18 juillet 2012
Le noyau atomique : liquide fissile ou molécule vitale ?
Une nouvelle vision unifiant les deux aspects noyau-liquide et noyau-molécule est révélée par une équipe de l'Institut de physique nucléaire d'Orsay (Université Paris-Sud/CNRS) et du CEA, en collaboration avec l'Université de Zagreb. En faisant l'analogie avec les étoiles à neutrons(1), les chercheurs ont mis en évidence, pour la première fois, l'une des conditions nécessaires à la formation, au sein du noyau atomique, de comportements moléculaires. Ces derniers permettent notamment de comprendre la synthèse des éléments indispensables à l'apparition de la vie. Ces travaux sont publiés dans Nature le 19 juillet 2012.
Le noyau atomique est généralement décrit comme une goutte de liquide quantique de l'ordre du millionième de milliardième de mètre de diamètre. Ce comportement de type liquide explique notamment la fission nucléaire, et s'applique préférentiellement aux noyaux lourds, c'est-à-dire ceux contenant beaucoup de nucléons (les neutrons et les protons). En revanche, les noyaux légers(2) peuvent se comporter comme de minuscules « molécules » - ou agrégats - composés de neutrons et de protons à l'échelle du noyau. Cet aspect moléculaire permet de comprendre la synthèse stellaire du carbone-12 ou d'éléments plus lourds, nécessaires à l'apparition de la vie(3).
Jusqu'à présent, les deux visions « noyau-molécule » et « noyau-liquide » co-existaient. Aujourd'hui, une équipe de l'Institut de physique nucléaire d'Orsay (Université Paris-Sud/CNRS) et du CEA, en collaboration avec des chercheurs de l'Université de Zagreb, livre une vision unifiée de ces deux aspects. En résolvant des équations de physique quantique à l'échelle du noyau (et notamment l'équation de Schrödinger), les chercheurs ont démontré que, si un noyau léger peut présenter un comportement de type moléculaire (qui tend vers l'état cristallin), il adopte, lorsqu'il s'alourdit, un comportement de type liquide. Pour établir cette nouvelle théorie, les physiciens se sont inspirés des étoiles à neutrons(1). Plus on s'enfonce à l'intérieur de ces étoiles, plus on passe d'un milieu cristallin à un milieu liquide. Grâce à cette analogie, les physiciens ont identifié un mécanisme de transition de l'état liquide vers l'état cristallin du noyau. Lorsque les interactions entre neutrons et protons ne sont pas assez fortes pour les fixer au sein du noyau, celui-ci est alors dans un état de type liquide quantique où neutrons et protons sont délocalisés. À l'inverse, dans un état cristallin, neutrons et protons seraient fixés à intervalles réguliers dans le noyau. La molécule nucléaire est interprétée comme un état intermédiaire entre le liquide quantique et le cristal. À long terme, il s'agit de comprendre de manière unifiée les différents états du noyau.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
LE BOSON DE HIGGS |
|
|
|
|
|
Le 4 juillet 2012 à 15h54
Un nouveau boson découvert au Cern : le Higgs, peut-être...
Par Laurent Sacco, Futura-Sciences Share on joliprintPDF Partager C’est un boson, le plus lourd jamais découvert dans un accélérateur de particules et on observe les conséquences de son existence dans les deux détecteurs géants du LHC. Voici l'annonce du Cern, tant attendue. Avec une masse d’environ 126 GeV, il s’agit très probablement du boson de Higgs supposé être à l’origine des masses des particules élémentaires. Mais il reste du travail pour déterminer s’il possède bien les propriétés du boson de Higgs ou s’il s’agit d’une particule radicalement nouvelle.
Parcourez notre dossier complet sur le boson de Higgs
Tout le monde attendait la conférence de ce matin du 4 juillet 2012 au Cern, annonçant les derniers résultats de la chasse au boson de Higgs. Avait-on enfin découvert la mythique particule censée expliquer l’origine des masses des quarks et des leptons du modèle standard et plus précisément celles des particules médiatrices des forces du modèles électrofaibles ? Les rumeurs de la découverte de ce boson allaient bon train mais la seule chose certaine était que quatre des six physiciens ayant introduit le mécanisme dit de Brout-Englert-Higgs en 1964 seraient bien présents pour écouter ce que les deux porte-paroles des expériences phares du LHC allaient dire.
C’est Joe Incandela qui a pris la parole le premier, au nom de la collaboration CMS, puis ce fut le tour de Fabiola Gianotti pour Atlas. Dans les deux cas l’émotion a saisi l’assemblée ainsi bien sûr que tous les physiciens suivant le séminaire sur Internet, lorsque les deux chercheurs ont dévoilé les résultats des analyses faites.
En rouge on voit la trajectoire de 4 muons dans le détecteur Atlas, résultant très probablement de la désintégration d'un boson de Higgs. © ATLAS, Collaboration-Cern
Il y a très peu de doute que les détecteurs Atlas et CMS aient effectivement permis de découvrir une nouvelle particule dans les produits de collisions de faisceaux de protons durant les années 2011 et 2012 au Cern. Dans les deux cas, il s’agit d’un boson dont la masse est d’environ 126 GeV et qui se désintègre en d’autres particules selon des réactions similaires. On observe ainsi des paires de photons gamma et des quadruplets de leptons (comme des muons ou des électrons), ainsi que d’autres produits de désintégrations.
Un boson dont l'identité est encore incertaine
Surtout, si l’on compare les deux détecteurs à deux appareils de réception radio cherchant à écouter une station à une fréquence donnée au-dessus d’un bruit de fond, la musique qu’ils écoutent maintenant est devenue beaucoup plus clairement audible. En termes techniques, on dit que le signal est au-dessus du bruit de fond à 5 sigma dans les deux appareils. C’est un peu comme si on écoutait une partie d’une symphonie de Mozart et qu’il n’y ait que 0,00003 % de chance environ que des fluctuations dans le bruit de fond aient reproduit par hasard ce morceau de musique.
John Ellis, le grand physicien théoricien, répond à la question : qu'est-ce que le boson de Higgs et comment le recherche-t-on ? © CernTV, YouTube
Cinq sigma, c'est le seuil que l'on doit atteindre, dans deux appareils de détections différents, pour éviter des erreurs systématiques, et pouvoir affirmer avoir fait une découverte en physique. Peut-on dire pour autant que l'on a découvert le boson de Higgs ?
Pas encore....
Cependant, comme le dit le directeur de la recherche du Cern, Sergio Bertolucci : « Il est difficile de ne pas s’enthousiasmer. Nous avions dit l’année dernière qu'en 2012, soit nous trouverions une nouvelle particule semblable au boson de Higgs, soit nous exclurions l’existence du Higgs du modèle standard. Avec toute la prudence qui s’impose, nous nous trouvons, il me semble, à un croisement : l’observation de cette nouvelle particule nous montre la voie à suivre dans l’avenir pour mieux comprendre ce que nous observons dans les données ». Ce à quoi Rolf Heuer, le directeur général du Cern, a ajouté : « Nous avons franchi une nouvelle étape dans notre compréhension de la nature. La découverte d’une particule dont les caractéristiques sont compatibles avec celles du boson de Higgs ouvre la voie à des études plus poussées, exigeant davantage de statistiques, qui établiront les propriétés de la nouvelle particule ; elle devrait par ailleurs lever le voile sur d’autres mystères de notre univers ».
Futura-Sciences reviendra bientôt plus en profondeur sur cette découverte.
DOCUMENT FUTURA-SCIENCES LIEN
LE SPIN :c'est le moment angulaire ( ou cinétique ) des particules quantiques.
DOCUMENT univ-Lill.fr LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ] Précédente - Suivante |
|
|
|
|
|
|