ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

PROTEINES

 

DOCUMENT         CNRS             LIEN

Paris, 12 juillet 2007

Prévoir l'activité des protéines, en cartographiant leurs charges électriques dans le vide

Les charges électriques déterminent la forme de nombreuses protéines et régulent leur activité biologique. Les scientifiques essaient de localiser ces charges pour prévoir le comportement des molécules, mais ils sont souvent gênés par les perturbations du milieu dans lequel elles se trouvent. Des chercheurs du laboratoire de spectrométrie moléculaire (CNRS/Université de Lyon) ont mis au point une méthode permettant d'obtenir la distribution des charges électriques sur une molécule isolée, dans le vide. C'est une première, réalisée grâce à une technique combinant spectrométrie de masse et spectroscopie laser, qui a été brevetée[1].

Les charges électriques et leurs transferts régulent la forme et l'activité de nombreuses protéines. Un changement de forme ou d'activité peut entraîner des pathologies graves tels que les cancers ou les maladies à prion. Mais comment extraire la distribution de charge d'une protéine noyée dans un milieu contenant une multitude de molécules et d'ions différents ? Une solution consiste à étudier la molécule isolée dans le vide. Mais alors comment sonder ses charges ?

 

En associant spectrométrie de masse et spectroscopie laser, les chercheurs du laboratoire de Spectrométrie ionique et moléculaire (CNRS/Université Lyon 1) en collaboration avec le laboratoire Sciences analytiques (CNRS/Université Lyon 1) ont mesuré le spectre d'excitation électronique d'une protéine isolée. Cette première mondiale donne une signature de l'état d'ionisation (c'est-à-dire une cartographie des charges électriques) des tyrosines dans la protéine. La tyrosine, l'un des 20 acides aminés qui constituent les protéines, est un centre actif car elle cède facilement un proton en faisant apparaître une charge négative.

 

 

Cette ionisation intervient dans l'action de nombreuses enzymes. En répétant la mesure à intervalles de temps réguliers, il sera désormais possible de suivre au plus près ce genre de réaction, dans un environnement totalement isolé. Ce regard de physicien sur les mécanismes biologiques fondamentaux dans le vide devrait permettre de mieux comprendre et contrôler les réactions biologiques in vivo.

 

 
 
 
 

LE ROLE DES NEO-NEURONES

 


Paris, 14 mai 2012
Apprentissage et mémorisation : le rôle des néo-neurones dévoilé
Des chercheurs de l'Institut Pasteur et du CNRS viennent d'identifier chez la souris le rôle des néo-neurones formés par le cerveau adulte. En parvenant à les stimuler de manière sélective, les chercheurs montrent que ces néo-neurones améliorent les capacités d'apprentissage et de mémorisation de tâches difficiles. Cette nouvelle propriété des néo-neurones dans l'intégration d'informations complexes pourrait ouvrir des perspectives dans le traitement de certaines maladies neuro-dégénératives. Cette publication est en ligne sur le site de la revue Nature Neuroscience.
La découverte de nouveaux neurones formés par le cerveau adulte avait fait grand bruit en 2003. Elle mettait à mal le dogme quasi-séculaire selon lequel le nombre de neurones est défini dès la naissance, toute perte étant irréversible. Une découverte d'autant plus incroyable que la fonction de ces nouveaux neurones restait indéterminée jusqu'à aujourd'hui.

L'équipe de Pierre-Marie Lledo, chef de l'unité Perception et mémoire (Institut Pasteur/CNRS), vient de mettre en évidence, chez la souris, le rôle joué dans l'apprentissage et la mémoire par ces néo-neurones formés par le cerveau adulte. A l'aide d'un dispositif expérimental utilisant l'optogénétique mis au point par la même équipe et qui avait déjà fait l'objet d'une publication en décembre 2010, les chercheurs ont démontré que ces néo-neurones, quand ils sont stimulés par un bref flash lumineux, facilitent l'apprentissage ainsi que la mémorisation de tâches complexes. Ainsi les souris mémorisent plus rapidement les informations proposées pendant la tâche d'apprentissage et se souviennent des exercices 50 jours après l'arrêt des expérimentations. A l'inverse, les néo-neurones générés juste après la naissance de l'individu ne confèrent aucun avantage, ni pour l'apprentissage, ni pour la mémoire. Seuls les neurones produits par le cerveau adulte sont donc importants pour l'apprentissage et la mémoire.

« Cette étude démontre que l'activité de quelques neurones produits chez l'adulte peut avoir un effet important sur les processus cognitifs et le comportement. De plus, ce travail illustre, en partie, comment le cerveau assimile de nouvelles stimulations. Dans notre vie quotidienne, l'activité électrique (mimée par nos flashs lumineux) est exercée par les centres de l'attention de notre cerveau » explique Pierre-Marie Lledo qui a dirigé ce travail.

Au-delà du rôle fonctionnel qu'elle établit, cette découverte réaffirme le lien patent entre « humeur » (définie ici par un schéma particulier de stimulation) et activité cérébrale : il est établi que la curiosité, l'éveil et le plaisir favorisent la formation de néo-neurones et, grâce à eux, l'acquisition de nouvelles compétences cognitives. A l'inverse, un état dépressif se répercute sur la production de nouveaux neurones et déclenche un cercle vicieux qui entretient cet abattement. Ces résultats et les technologies d'optogénétique qui ont permis d'y parvenir pourraient se révéler très utiles pour la mise au point de protocoles thérapeutiques visant à contrer le développement des maladies neurologiques ou psychiatriques.

 

DOCUMENT            CNRS            LIEN

 
 
 
 

BIOLOGIE

 

Paris, 05 décembre 2012
Les végétaux ont le sens de la rectitude !
A chaque instant, les plantes effectuent des mouvements imperceptibles qui leur permettent de se maintenir debout. Elles sont soumises en effet au double défi de la gravité et du vent, et elles ne peuvent rester droites que par un contrôle actif. Pour la première fois, des chercheurs de l'INRA et du CNRS ont montré que le port dressé ne résulte pas de la seule perception de la gravité : les plantes doivent aussi percevoir leur propre courbure, et la rectifier. Ce travail permet par exemple de mieux comprendre comment les arbres forestiers peuvent rester droits au fil des ans. Le résultat de ces recherches, publié dans la revue des PNAS la semaine du 3 décembre 2012, fournit de nouvelles pistes pour l'amélioration génétique de la forme des troncs ou de la résilience à la verse des cultures (1).
Pourquoi les arbres et les blés sont droits ?
Pour conserver leur port érigé, les plantes terrestres doivent en permanence réagir activement aux perturbations liées à l'augmentation de leur masse ou à des variations d'inclinaison de leur ancrage (verse, terrains en pente). Ce contrôle postural est rendu possible par des mouvements actifs, sous l'effet moteur de la croissance différentielle ou de bois de réaction (2). Sa réussite est très importante pour la plante, mais aussi pour ses usages agronomiques (récupération des verses des céréales) ou forestiers (défauts de forme des troncs et de qualité du bois). Etudiés depuis Darwin et connus sous le nom de gravitropisme, les mécanismes de contrôle de ce mouvement actif étaient encore mal connus.

Les plantes perçoivent leur propre forme et la rectifient
Les chercheurs ont montré que les plantes ne peuvent pas maintenir leur port érigé à l'aide de la seule perception de leur inclinaison par rapport à la gravité. Il faut lui adjoindre une perception continue de la propre courbure de leurs tiges et une tendance à la rectification de celle-ci. Il s'agit ainsi d'un phénomène de proprioception, comparable à ce que l'on rencontre chez les animaux et les humains et qui permet aux organismes d'avoir le sens de leur forme et de leur mouvement.  Grâce à cette découverte, les chercheurs ont proposé et validé un modèle mathématique universel  reproduisant le contrôle complet des mouvements de redressement sur 11 espèces de plantes à fleurs terrestres, et sur des organes allant de la minuscule germination du blé à des troncs de peupliers. Ce modèle montre que le caractère contrôlant la dynamique du mouvement et la forme finale de la plante est un ratio entre sa sensibilité à la gravité et sa sensibilité proprioceptive, et que ce ratio doit être ajusté à la taille de la plante. De plus, une méthode de caractérisation rapide et sans contact avec la plante (par analyse d'images) de ce ratio a été développée.  

Ces résultats modifient l'image que nous avions de la sensibilité des végétaux, en montrant l'importance de la proprioception, à l'instar de ce qui a cours chez les animaux et les humains. Par ailleurs, ils fournissent de nouveaux concepts et outils pour l'amélioration génétique de la capacité des cultures à être plus résilientes à la verse, et des arbres à produire des fûts rectilignes et des bois de bonne qualité. Ils aideront enfin les modélisateurs à mieux prédire les conséquences des changements climatiques, qui risquent de se traduire aussi par une modification du régime des vents.

 

 

DOCUMENT            CNRS              LIEN

 

 
 
 
 

L'EFFET COUPE-FAIM

 

DOCUMENT        CNRS            LIEN


5 juillet 2012

L'effet « coupe-faim » des protéines élucidé

Fréquemment recommandées dans les régimes amaigrissants, les protéines alimentaires ont fait la preuve de leur efficacité grâce à leurs effets « coupe-faim ». L'équipe de Gilles Mithieux, directeur de l'Unité Inserm 855 « Nutrition et cerveau » à Lyon, est parvenue à expliquer les mécanismes biologiques responsables de cette propriété. Les chercheurs décrivent en détail les réactions en chaine provoquées par la digestion des protéines qui permettent de délivrer au cerveau un message de satiété, bien après le repas. Ces résultats, publiés le 05 juillet dans la revue Cell, permettent d'envisager une meilleure prise en charge des patients obèses ou en surpoids.

L'équipe de chercheurs Inserm, CNRS et Université Claude Bernard Lyon 1 est parvenue à élucider la sensation de satiété ressentie plusieurs heures après un repas riche en protéines. Elle s'explique par des échanges entre le système digestif et le cerveau, initiés par les protéines alimentaires que l'on trouve majoritairement dans la viande, le poisson, les œufs ou encore certains produits céréaliers.

Lors de travaux précédents, les chercheurs ont prouvé que l'ingestion de protéines alimentaires déclenche une synthèse de glucose au niveau de l'intestin, après les périodes d'assimilation des repas (une fonction appelée néoglucogenèse). Le glucose qui est libéré dans la circulation sanguine (veine porte) est détecté par le système nerveux, qui  envoie un signal « coupe-faim » au cerveau. Plus connue au niveau du foie et des reins pour alimenter les autres organes en sucre, c'est au niveau de l'intestin que la néoglucogenèse délivre un message « coupe-faim » à distance des repas, caractéristique des effets dits « de satiété ».

Dans ce nouveau travail, ils sont parvenus à décrire précisément comment la digestion des protéines provoque une double boucle de réactions en chaîne impliquant le système nerveux périphérique ventral (passant par le nerf vague) et dorsal (passant par la moelle épinière).

L'exploration dans le détail du mécanisme biologique a permis d'identifier des récepteurs spécifiques (les récepteurs µ-opioïdes(1)) présents dans le système nerveux de la veine porte, à la sortie de l'intestin. Ces récepteurs sont inhibés par la présence des oligopeptides, produits de la digestion des protéines.

Dans un premier temps, les oligopeptides agissent sur les récepteurs µ-opioïdes qui envoient un message par la voie du nerf vague et par la voie spinale vers les zones du cerveau spécialisées dans la réception de ces messages.

Dans un second temps, le cerveau envoie un message-retour qui déclenche la néoglucogenèse par l'intestin. Cette dernière initie alors l'envoi du message « coupe-faim » dans les zones du cerveau contrôlant la prise alimentaire, comme l'hypothalamus.

L'identification de ces récepteurs et de leur rôle dans la néoglucogenèse intestinale permet d'envisager de nouvelles pistes thérapeutiques dans le traitement de l'obésité. L'enjeu est de déterminer la façon d'agir sur ces récepteurs µ-opioïdes pour réguler durablement la sensation de satiété. Selon Gilles Mithieux, principal auteur de ce travail : « Sollicités trop fortement, ces récepteurs peuvent devenir insensibles. Il faudrait donc trouver le meilleur moyen de les inhiber "modérément", afin de garder leur effet bénéfique à long terme sur le contrôle de la prise alimentaire ».

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google