|
|
|
|
 |
|
SCLEROSE EN PLAQUES 2 |
|
|
|
|
|
Paris, 30 JANVIER 2013
Les hormones androgènes pourraient permettre de traiter la sclérose en plaques
La testostérone et ses dérivés pourraient constituer un traitement efficace contre les maladies de la myéline telles que la sclérose en plaques. C'est ce que montrent les travaux réalisés par des chercheurs du Laboratoire d'imagerie et de neurosciences cognitives1 (CNRS/Université de Strasbourg), en collaboration notamment avec l'unité « Neuroprotection et neurorégénération : molécules neuroactives de petite taille » (Inserm/Université Paris-Sud)2. La myéline compose les gaines qui protègent les fibres nerveuses et permettent d'augmenter la vitesse de l'influx nerveux. Un déficit dans la production de la myéline ou bien sa destruction conduit à de graves maladies pour lesquelles il n'existe actuellement aucun traitement curatif. Les chercheurs viennent de montrer, chez des souris dont les fibres nerveuses du cerveau ont été démyélinisées, que la testostérone et une molécule analogue de synthèse induisent la régénération des oligodendrocytes, les cellules responsables de la myélinisation et stimulent la remyélinisation. Ces travaux viennent d'être publiés dans la revue Brain.
La sclérose en plaques est une maladie dégénérative de la myéline qui s'accompagne d'une inflammation prononcée du système nerveux central. Touchant environ 80 000 personnes en France, elle se caractérise par des troubles de la motricité et de la vision et par des atteintes neurologiques comme des difficultés d'élocution. On savait déjà que la maladie présentait une composante hormonale. En effet, les femmes sont deux fois plus atteintes que les hommes, bien que le pronostic soit moins bon pour le sexe masculin. De plus, il a été observé que les femmes enceintes atteintes de sclérose en plaques se portent mieux durant leur grossesse, lorsque leurs taux d'hormones sont élevés. L'équipe dirigée par le Dr Said Ghandour avait déjà montré l'effet protecteur de la testostérone sur les oligodendrocytes (cellules responsables de la myélinisation).
Pour cette étude, les chercheurs ont tout d'abord induit une démyélinisation chronique des fibres nerveuses dans le cerveau de souris. Pour cela, ils ont intégré à leur nourriture de la cuprizone, une molécule qui séquestre le cuivre. Les souris ont alors présenté une démyélinisation chronique analogue à celle observée au cours de la phase progressive de la sclérose en plaques. Elles ont ensuite été traitées à la testostérone durant 6 à 9 semaines. Résultat : leurs fibres nerveuses ont été à nouveau myélinisées et leurs symptômes se sont remarquablement atténués. Les mêmes effets ont été obtenus en utilisant un analogue de synthèse de la testostérone, la 7-alpha-méthyl-19-nortestostérone (MENT).
Les chercheurs ont par la suite montré que ces androgènes entrainaient la transformation des cellules souches neurales en oligodendrocytes et favorisaient la synthèse de myéline par les oligodendrocytes, conduisant à la préservation de l'intégrité des fibres nerveuses. Ils ont ensuite répété l'expérience, mais cette fois-ci en utilisant deux souches de souris transgéniques : l'une comportait un récepteur des androgènes muté et l'autre un récepteur qui avait été invalidé sélectivement dans le système nerveux central. Sur ces souris insensibles aux androgènes, la testostérone n'a pas stimulé de remyélinisation des fibres nerveuses.
Ces résultats identifient le récepteur des androgènes comme une cible thérapeutique prometteuse pour le traitement de maladies comme la sclérose en plaques. Ils ouvrent la voie à l'utilisation des androgènes pour favoriser la régénération de la myéline. Des travaux complémentaires devraient par ailleurs s'intéresser à la possibilité d'utiliser les taux sanguins de testostérone comme biomarqueurs pour évaluer la progression des maladies démyélinisantes.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
MALADIE AUTO-IMMUNE |
|
|
|
|
|
Paris, 19 décembre 2012
Maladie auto-immune : la piste virale confirmée
Pourquoi le système immunitaire peut-il se retourner contre nos propres cellules ? C'est à cette question que tente de répondre les chercheurs de l'unité mixte Inserm/CNRS/Université Pierre et Marie Curie/Association Institut de myologie « Thérapies des maladies du muscle strié », en se penchant plus particulièrement sur une maladie auto-immune, la myasthénie grave. Dans le cadre du projet FIGHT-MG (Combattre la Myasthénie Grave), financé par la Commission Européenne et coordonné par l'Inserm, Sonia Berrih-Aknin et Rozen Le Panse ont apporté la preuve du concept qu'une molécule mimant un virus peut déclencher une réponse immunitaire inappropriée dégradant les fonctions musculaires. Ces résultats sont publiés dans la revue Annals of Neurology, accessible en ligne.
La myasthénie, une maladie auto-immune rare
La myasthénie grave est une maladie auto-immune rare (5 à 6 000 patients en France) entrainant une faiblesse musculaire et une fatigabilité excessive. Elle touche généralement d'abord les muscles du visage, puis elle peut se généraliser aux muscles des membres ou encore aux muscles respiratoires entrainant une détresse respiratoire.
Elle est due à la production d'auto-anticorps circulants qui bloquent les récepteurs de l'acétylcholine (RACh), un neurotransmetteur nécessaire à la transmission du signal nerveux moteur, au niveau de la jonction neuromusculaire.
Est-ce qu'une infection virale peut-être à l'origine de la myasthénie ?
La myasthénie est une maladie multifactorielle où des facteurs environnementaux semblent jouer un rôle clé dans son déclenchement. Les infections virales sont suspectées mais prouver le rôle d'un virus dans le déclenchement est difficile. En effet, le diagnostic de myasthénie est souvent fait des mois, voire des années après le réel début de la maladie quand le virus n'est plus détectable, alors qu'une signature laissée par le virus peut se voir longtemps après l'infection.
La preuve de concept de l'origine virale apportée par les chercheurs
Dans le cadre du projet européen FIGHT-MG, l'équipe de chercheurs est parvenue à décrypter le déclenchement de la maladie en utilisant une molécule mimant l'ARN double brin viral (le Poly(I:C)).
Pour cela, ils se sont penchés sur l'organe jouant un rôle central dans cette pathologie : le thymus. Cet organe, situé au niveau du thorax, sert de lieu de maturation aux lymphocytes T, acteurs centraux des réponses immunitaires et normalement éduqués pour éviter le développement d'une auto-immunité.
Ils ont ainsi mis en évidence in vitro que le Poly(I:C) était capable d'induire spécifiquement une surexpression de RACh par les cellules épithéliales thymiques, tout en activant trois protéines (le récepteur « toll-like » 3 (TLR3), la protéine kinase R (PKR) et l'interféron-beta (IFN-â)) ; cette dernière entrainant une inflammation au niveau du thymus.
En parallèle, ils ont analysé les thymus pathologiques des malades atteints de myasthénie, chez lesquels ils ont observé une surexpression de ces 3 mêmes protéines du système immunitaire, surexpression caractéristique d'une infection virale.
Enfin, les chercheurs sont parvenus également à identifier les mêmes changements moléculaires dans le thymus de souris, suite à l'injection de Poly(I:C). Après une période d'injection prolongée, ils ont aussi observé chez ces souris la prolifération de cellules B anti-RACh, la présence d'auto-anticorps bloquant les récepteurs RACh et des signes cliniques synonymes de faiblesse musculaire comme dans la myasthénie. Ces résultats originaux montrent que des molécules mimant une infection virale sont capables d'induire une myasthénie chez la souris, ce qui jusqu'à présent n'avait jamais été démontré.
L'ensemble des travaux publiés dans la revue Annals of Neurology apporte une preuve de concept qu'une infection virale pourrait entrainer une inflammation du thymus et conduire au développement d'une myasthénie auto-immune.
Les prochaines étapes de recherche consisteront à déterminer de quel virus exogène il pourrait s'agir ou s'il s'agit d'une activation anormale d'une réponse anti-virale par des molécules endogènes.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
LA REPARATION DE L'ADN |
|
|
|
|
|
Paris, 7 septembre 2012
Observer en temps réel la réparation d'une seule molécule d'ADN
L'ADN est sans cesse endommagé par des agents environnementaux tels que les rayons ultra-violets ou certaines molécules de la fumée de cigarette. Sans arrêt, les cellules mettent en œuvre des mécanismes de réparation de cet ADN d'une efficacité redoutable. Une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, est parvenue à suivre en direct, pour la première fois, les étapes initiales de l'un de ces systèmes de réparation de l'ADN encore peu connu. Grâce à une technique inédite appliquée à une molécule unique d'ADN sur un modèle bactérien, les chercheurs ont compris comment plusieurs acteurs interagissent pour réparer l'ADN avec une grande fiabilité. Publiés dans Nature le 9 septembre 2012, leurs travaux visent à mieux comprendre l'apparition de cancers et comment ils deviennent résistants aux chimiothérapies.
Les rayons ultra-violets, la fumée de tabac ou encore les benzopyrènes contenus dans la viande trop cuite provoquent des altérations au niveau de l'ADN de nos cellules qui peuvent conduire à l'apparition de cancers. Ces agents environnementaux détériorent la structure même de l'ADN, entraînant notamment des dégâts dits « encombrants » (comme la formation de ponts chimiques entre les bases de l'ADN). Pour identifier et réparer ce type de dégâts, la cellule dispose de plusieurs systèmes, comme la « réparation transcriptionellement-couplée » (ou TCR pour Transcription-coupled repair system) dont le mécanisme d'action complexe reste encore aujourd'hui peu connu. Des anomalies dans ce mécanisme TCR, qui permet une surveillance permanente du génome, sont à l'origine de certaines maladies héréditaires comme le Xeroderma pigmentosum qui touche les « enfants de la Lune », hypersensibles aux rayons ultra-violets du Soleil.
Pour la première fois, une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, a réussi à observer les étapes initiales du mécanisme de réparation TCR sur un modèle bactérien. Pour y parvenir, les chercheurs ont employé une technique inédite de nanomanipulation de molécule individuelle(1) qui leur a permis de détecter et suivre en temps réel les interactions entre les molécules en jeu sur une seule molécule d'ADN endommagée. Ils ont élucidé les interactions entre les différents acteurs dans les premières étapes de ce processus TCR. Une première protéine, l'ARN polymérase(2), parcourt normalement l'ADN sans encombre mais se trouve bloquée lorsqu'elle rencontre un dégât encombrant, (tel un train immobilisé sur les rails par une chute de pierres). Une deuxième protéine, Mfd, se fixe à l'ARN polymérase bloquée et la chasse du rail endommagé afin de pouvoir ensuite y diriger les autres protéines de réparation nécessaires à la réparation du dégât. Les mesures de vitesses de réaction ont permis de constater que Mfd agit particulièrement lentement sur l'ARN polymérase : elle fait bouger la polymérase en une vingtaine de secondes. De plus, Mfd déplace bien l'ARN polymérase bloquée mais reste elle-même ensuite associée à l'ADN pendant des temps longs (de l'ordre de cinq minutes), lui permettant de coordonner l'arrivée d'autres protéines de réparation au site lésé.
Si les chercheurs ont expliqué comment ce système parvient à une fiabilité de presque 100%, une meilleure compréhension de ces processus de réparation est par ailleurs essentielle pour savoir comment apparaissent les cancers et comment ils deviennent résistants aux chimiothérapies.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
L'OREILLE ABSOLUE |
|
|
|
|
|
L'OREILLE ABSOLUE
FICHIER A TELECHARGER |
|
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante |
|
|
|
|
|
|