ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

REPARATION DE L'ADN

 

Paris, 7 septembre 2012

Observer en temps réel la réparation d'une seule molécule d'ADN
L'ADN est sans cesse endommagé par des agents environnementaux tels que les rayons ultra-violets ou certaines molécules de la fumée de cigarette. Sans arrêt, les cellules mettent en œuvre des mécanismes de réparation de cet ADN d'une efficacité redoutable. Une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, est parvenue à suivre en direct, pour la première fois, les étapes initiales de l'un de ces systèmes de réparation de l'ADN encore peu connu. Grâce à une technique inédite appliquée à une molécule unique d'ADN sur un modèle bactérien, les chercheurs ont compris comment plusieurs acteurs interagissent pour réparer l'ADN avec une grande fiabilité. Publiés dans Nature le 9 septembre 2012, leurs travaux visent à mieux comprendre l'apparition de cancers et comment ils deviennent résistants aux chimiothérapies.
Les rayons ultra-violets, la fumée de tabac ou encore les benzopyrènes contenus dans la viande trop cuite provoquent des altérations au niveau de l'ADN de nos cellules qui peuvent conduire à l'apparition de cancers. Ces agents environnementaux détériorent la structure même de l'ADN, entraînant notamment des dégâts dits « encombrants » (comme la formation de ponts chimiques entre les bases de l'ADN). Pour identifier et réparer ce type de dégâts, la cellule dispose de plusieurs systèmes, comme la « réparation transcriptionellement-couplée » (ou TCR pour Transcription-coupled repair system) dont le mécanisme d'action complexe reste encore aujourd'hui peu connu. Des anomalies dans ce mécanisme TCR, qui permet une surveillance permanente du génome, sont à l'origine de certaines maladies héréditaires comme le Xeroderma pigmentosum qui touche les « enfants de la Lune », hypersensibles aux rayons ultra-violets du Soleil.

Pour la première fois, une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, a réussi à observer les étapes initiales du mécanisme de réparation TCR sur un modèle bactérien. Pour y parvenir, les chercheurs ont employé une technique inédite de nanomanipulation de molécule individuelle(1) qui leur a permis de détecter et suivre en temps réel les interactions entre les molécules en jeu sur une seule molécule d'ADN endommagée. Ils ont élucidé les interactions entre les différents acteurs dans les premières étapes de ce processus TCR. Une première protéine, l'ARN polymérase(2), parcourt normalement l'ADN sans encombre mais se trouve bloquée lorsqu'elle rencontre un dégât encombrant, (tel un train immobilisé sur les rails par une chute de pierres). Une deuxième protéine, Mfd, se fixe à l'ARN polymérase bloquée et la chasse du rail endommagé afin de pouvoir ensuite y diriger les autres protéines de réparation nécessaires à la réparation du dégât. Les mesures de vitesses de réaction ont permis de constater que Mfd agit particulièrement lentement sur l'ARN polymérase : elle fait bouger la polymérase en une vingtaine de secondes. De plus, Mfd déplace bien l'ARN polymérase bloquée mais  reste elle-même ensuite associée à l'ADN pendant des temps longs (de l'ordre de cinq minutes), lui permettant de coordonner l'arrivée d'autres protéines de réparation au site lésé.

Si les chercheurs ont expliqué comment ce système parvient à une fiabilité de presque 100%, une meilleure compréhension de ces processus de réparation est par ailleurs essentielle pour savoir comment apparaissent les cancers et comment ils deviennent résistants aux chimiothérapies.


Notes :
(1) Dans ces expériences de nanomanipulation, l'ADN endommagé est greffé à une surface de verre d'un côté et une microbille magnétique de l'autre. La bille permet d'étendre l'ADN perpendiculairement à la surface et de mesurer son extension bout-à-bout par vidéomicroscopie. La fixation à l'ADN de diverses protéines, ainsi que leur action, est identifiable par la modification que la protéine génère dans la structure ou conformation de l'ADN. Cette technique permet une analyse structurelle et cinétique extrêmement fine de réactions biochimiques in vitro.
(2) L'ARN polymérase est responsable de la lecture de l'ADN d'un gène et sa réécriture sous forme d'ARN, processus connu sous le nom de « transcription ».Il s'avère que l'ARN polymérase ne transcrit pas seulement les gènes, mais également l'ADN entre les gènes (jusqu'à récemment surnommé ADN « poubelle »), permettant par exemple à l'ARN polymérase d'effectuer son contrôle-qualité par TCR sur le génome entier d'un organisme.

DOCUMENT          CNRS          LIEN

 
 
 
 

SCLEROSE EN PLAQUE

 

DOCUMENT           CNRS           LIEN

Paris, 19  JUILLET  2012

 

 

Chez les patients atteint d'une SEP à un stade précoce, l'IRM du sodium a révélé des concentrations anormalement élevées de sodium dans quelques régions cérébrales spécifiques, comprenant le tronc cérébral, le cervelet et le pôle temporal. Chez les patients à un stade plus avancé, l'accumulation anormalement élevée de sodium était présente de manière diffuse sur l'ensemble du cerveau, y compris dans les régions cérébrales non démyélinisées. « Les concentrations de sodium dans la substance grise des zones fonctionnelles motrices sont ainsi corrélées à l'ampleur de l'invalidité du patient », souligne Wafaa Zaaraoui.
   
« L'IRM du sodium nous ouvre une voie pour mieux comprendre l'évolution de la maladie et détecter l'apparition de l'atteinte neuro-axonale responsable du handicap chez les patients. Des études à plus large échelle nous permettront de confirmer que ce paramètre est un biomarqueur non invasif de la dégénérescence des neurones. Il pourrait alors être utilisé dans l'évaluation de nouvelles thérapeutiques pour traiter la sclérose en plaques », conclut Jean-Philippe Ranjeva.

 

 


Paris, 19 JUILLET 2012

Sclérose en plaques : une accumulation anormale de sodium dans le cerveau mesurée par IRM du sodium témoigne de l'évolution de la maladie
Des chercheurs français du Centre de résonance magnétique biologique et médicale (CRMBM, CNRS/Aix Marseille Université/Assistance Publique-Hôpitaux de Marseille) ont mis en évidence, en collaboration avec le CHU de La Timone à Marseille, le CEMEREM (1) et une équipe allemande (Mannheim), une accumulation anormale de sodium dans le cerveau de patients atteints de sclérose en plaques pouvant refléter la dégénérescence des cellules nerveuses. Cette étude a été réalisée in vivo grâce à une méthode originale d'imagerie par résonance magnétique (IRM) permettant de cartographier la distribution en sodium dans le cerveau humain (2). Elle est publiée en ligne le 18 juillet 2012 dans le journal Radiology.
Chez les patients atteints de sclérose en plaques (SEP), le système immunitaire du corps s'attaque à la gaine protectrice (appelée myéline) qui entoure les axones des neurones dans le cerveau et la moelle épinière. L'atteinte de l'intégrité de cette gaine affecte la capacité de ces neurones à transmettre l'information nerveuse, ce qui provoque des troubles neurologiques et physiques pouvant être réversibles en fonction de la réparation partielle ou totale survenant après la période d'inflammation. Cependant l'atteinte neuro-axonale est difficile à évaluer alors même qu'elle est associée au déficit clinique irréversible observé lors des stades plus avancés de la maladie. Le type et la gravité des symptômes observés dans la SEP, ainsi que la progression de la maladie, varient également d'un patient à l'autre.

« Un défi majeur dans la sclérose en plaques est d'obtenir des marqueurs pronostiques de la progression de la maladie », souligne Patrick Cozzone, professeur de biophysique à la Faculté de Médecine de Marseille (Aix Marseille Université), et directeur émérite du Centre de résonance magnétique biologique et médicale (CRMBM, CNRS/AMU/AP-HM). « Nous avons collaboré pendant deux ans avec des chimistes, des physiciens et des cliniciens pour développer des techniques d'IRM du sodium (23Na) et pouvoir les appliquer à l'exploration de patients atteints de SEP », a déclaré l'auteur principal Wafaa Zaaraoui, chargée de recherche au CNRS. Cette technique d'imagerie permet aujourd'hui d'accéder aux concentrations cérébrales de sodium, un agent majeur du fonctionnement cellulaire.  Le sodium joue en effet un rôle primordial dans les processus de dégénérescence de l'axone, qui constitue la fibre nerveuse du neurone. D'où l'idée pour les scientifiques de s'intéresser à cet atome.

L'équipe de Jean-Philippe Ranjeva, professeur de neurosciences au CRMBM, en collaboration avec les équipes du professeur Lothar Schad, physicien à Mannheim (Heidelberg University, Allemagne) et du professeur Jean Pelletier (3), neurologue (APHM, CHU Timone, Marseille), a réalisé des explorations par IRM du sodium pour étudier la forme la plus commune de sclérose en plaques (poussée-rémission) dans laquelle des déficits cliniques clairement définis sont suivis par des périodes de récupération. Ce travail a été effectué sur un imageur équipant le CEMEREM (CNRS/AMU/AP-HM, CHU Timone, Marseille)

Notes :
(1) Le Centre d'exploration métabolique par résonance magnétique forme l'implantation hospitalière du CRMBM. L'ensemble CRMBM (où sont développés les aspects plus fondamentaux) et CEMEREM (pour les transferts cliniques) constitue une unité mixte de recherche CNRS / AMU conventionnée avec l'AP-HM et fondée en 1986 par Patrick Cozzone.
(2) L'imagerie par résonance magnétique (IRM) traditionnelle est basée sur l'excitation des noyaux d'hydrogène portés par les molécules d'eau.
(3) L'équipe de neurologie du professeur Jean Pelletier (APHM, CHU Timone, Marseille) a assuré la sélection et le suivi clinique des 26 patients atteints de SEP qui ont participé à cette étude.

 

 
 
 
 

L'OEIL ET LA VISION

 

L'OEIL  ET  LA  VISION

DOCUMENT           LIEN

 
 
 
 

CERVEAU ET MOTIVATION

 

Paris, 21 février 2012

Existe-t-il dans les profondeurs du cerveau un centre général de la motivation ?


L'équipe de Mathias Pessiglione, chargé de recherche Inserm du « Centre de recherche en neurosciences de la Pitié-Salpêtrière » (Inserm/UPMC-Université Pierre et Marie Curie/CNRS) a identifié la partie du cerveau impliquée dans la motivation lors d'une action mêlant effort physique et mental : le striatum ventral. Les résultats de leur étude sont publiés dans PLoS Biology le 21 février 2012.
Les résultats d'une activité (physique ou mentale) dépendent en partie des efforts consacrés à cette activité qui peuvent être motivés par une récompense. Par exemple, le sportif est susceptible de s'entrainer « plus intensément » si le résultat lui apporte un prestige social ou monétaire. Il en va de même pour l'étudiant qui prépare ses examens dans l'objectif de réussir sa carrière professionnelle. Que se passe-t-il lorsque des efforts physiques et mentaux sont nécessaires pour atteindre un objectif ?

L'équipe de Mathias Pessiglione de l'unité Inserm 975 « Centre de recherche en neurosciences de la Pitié-Salpêtrière » a cherché à savoir si des efforts mentaux et physiques sont conduits par un centre de motivation commun ou s'ils sont menés par des parties distinctes du cerveau. Les chercheurs ont donc étudié les mécanismes neuronaux qui découlent d'une activité mêlant l'action et la cognition.

Pour ce faire, un test de 360 essais, conjuguant effort mental et physique, a été réalisé sous l'œil d'un scanner. Les 20 participants volontaires allongés la tête dans un appareil d'IRM fonctionnelle doivent exécuter plusieurs séries de tâches leur permettant d'accumuler des gains qu'ils peuvent remporter mais qui sont plafonnés pour chaque série à partir de la première réponse fausse de la série. Ces tâches mêlent une action cognitive et une action motrice. Les participants doivent trouver le chiffre le plus grand numériquement parmi des chiffres de tailles différentes et le sélectionner en serrant soit la poignée située au niveau de leur main gauche ou de leur main droite en fonction de là où se trouve ce dit chiffre. A la fin de l'essai, un récapitulatif des gains est projeté de manière à motiver le participant.

Grâce aux images obtenues à partir des clichés des IRM effectués lors du test, l'équipe de Mathias Pessiglione a identifié dans la profondeur du cerveau un système motivationnel général, c'est-à-dire une structure capable d'activer n'importe quel type d'effort, qu'il soit mental (comme se concentrer sur ce qu'on fait) ou physique (comme soulever une charge). En effet, les chercheurs ont constaté que le striatum ventral s'activait en proportion de la somme en jeu et que plus le degré de motivation était fort, plus l'activation était importante. De plus, le striatum ventral se connecte à la partie médiane du striatum (le noyau caudé) lorsque la tâche à réaliser est difficile sur le plan cognitif (lorsque la taille physique et la grandeur numérique des chiffres ne correspondent pas). Réciproquement cette région ventrale sollicite la partie latérale du striatum (le putamen) lorsque la difficulté se situe sur le plan moteur (lorsqu'une forte pression doit être exercée sur les poignées).

Les chercheurs suggèrent donc que la motivation peut être codée par le striatum ventral. Ce dernier conduisant soit la partie motrice soit la partie cognitive du striatum selon l'action à mener pour l'amplifier. « Le striatum ventral pourrait commuter les connexions en fonction de la demande, c'est-à-dire amplifier l'activité neuronale dans le noyau caudé pour une opération cognitive et dans le putamen pour une action physique » explique Mathias Pessiglione.

DOCUMENT         CNRS          LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google