ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

L'IMAGERIE MÉDICALE

 

PHYSIQUE ET MÉDECINE : L'IMAGERIE MÉDICALE


L'imagerie médicale a sans aucun doute entraîné ces vingt dernières années une transformation radicale dans la façon d'aborder le diagnostic et le suivi thérapeutique. Un diagnostic de localisation d'une lésion cérébrale qui nécessitait un examen clinique long et minutieux par un neurologue expérimenté se fait aujourd'hui avec une précision millimétrique grâce au scanner ou à l'imagerie par résonance magnétique (IRM). Là où le maître entouré de ses élèves démontrait que la lésion ischémique ou tumorale devait siéger au niveau de tel noyau du thalamus (la vérification ayant lieu malheureusement souvent quelques semaines plus tard sur les coupes de cerveau), le neuroradiologue parvient au même résultat en quelques minutes. On pourrait multiplier les exemples ; là où le cardiologue se fiait à son auscultation et à des clichés de thorax, l'échocardiographie montre en temps réel les mouvements des valves cardiaques et la dynamique de la contraction ventriculaire, la scintigraphie myocardique précise la localisation des zones de myocarde ischémique et les anomalies de sa contraction ; demain l'IRM permettra de voir la circulation coronaire et le tissu myocardique et remplacera l'angiographie par voie artérielle. On pourrait encore citer l'échographie en obstétrique, en hépatologie ou en urologie, la scintigraphie dans la détection des lésions de la thyroïde, des métastases osseuses ou de l'embolie pulmonaire. Aujourd'hui la tomographie par émission de positons (TEP) est en train de devenir la méthode incontournable en cancérologie, non pas tant pour le diagnostic du cancer que pour en préciser l'extension, l'existence de métastases, l'évolution sous traitement après chimiothérapie, chirurgie ou radiothérapie ou encore l'apparition de récidives ou de métastases tardives. Au milieu du 19ème siècle, l'inventeur de la médecine expérimentale, Claude Bernard indiquait à Ernest Renan qui l'a relaté, que « l ‘on ne connaîtrait la physiologie que le jour où l'on saura décrire le voyage d'un atome d'azote depuis son entrée dans l'organisme jusqu'à sa sortie». Ce qui était totalement hors de portée du savant de cette époque, connaît en ce début du 21ème siècle une pleine réalisation grâce à une série d'avancées techniques rendues d'abord possibles par la radioactivité et aussi dans une certaine mesure par l'IRM et de toutes façons par la combinaison de plusieurs méthodes lorsqu'on aborde la pathologie. C'est certainement dans la description du voyage fait par le médicament dans le corps que réside aujourd'hui une des avancées les plus intéressantes dans le domaine pharmaceutique. Mais nous verrons aussi que quand nous écoutons, parlons, bougeons, réfléchissons... certaines aires de notre cerveau s'activent. Cette activation électrique et chimique des neurones se traduit par une augmentation du débit sanguin local dans les régions cérébrales concernées par cette activation. La TEP d'abord puis en utilisant les mêmes principes physiologiques, l'IRM aujourd'hui permet de produire des images sensibles au débit sanguin et ce, sans recours à l'injection d'une substance ou molécule particulière. Il ne peut s'agir dans cette conférence de décrire les principes physiques, les indications de toutes ces méthodes et les résultats qu'elles permettent d'obtenir en clinique. Par contre la comparaison de l'origine et de l'évolution de trois de ces méthodes, la radiologie, la médecine nucléaire et l'imagerie par résonance magnétique nucléaire est intéressante. La perspective historique permet en effet de mieux comprendre la genèse, l'évolution et les indications de ces différentes méthodes qui ont toutes leur point de départ dans la physique.

 

VIDEO            CANAL  U             LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

THERAPIES CELLULAIRES

 

 

 

 

 

 

 

Le fantastique espoir des thérapies cellulaires


Alzheimer, Parkinson, diabète, leucémie… toutes ces maladies pourraient être traitées par thérapie cellulaire. Ce formidable espoir repose sur les cellules souches, capables de se transformer en n'importe quel type de cellule ou de tissu. Mais où peut-on trouver ces cellules ?


Pendant longtemps les cellules souches ont gardé leurs mystères. Comment les distinguer des cellules différenciées qui ne possèdent pas la même faculté de "transformisme" ?
En effet, toutes les cellules du corps humain contiennent le même nombre de chromosomes et donc le même nombre de gènes. Au stade embryonnaire, les cellules ne sont pas différenciées. Elles sont dites totipotentes, car elles sont alors capables de se développer en n'importe quel type de cellule ou de tissu humain : os, nerfs, muscles, cellules d'îlots pancréatiques, etc.
La différenciation cellulaire
La distinction entre elles apparaît au cours de la division cellulaire. Les cellules de cheveux ne se reproduiront plus qu'en cellules de cheveux, celles de muscles uniquement en cellules musculaires… le reste de l'information génétique reste endormi.
Depuis plus d'une dizaine d'années, les cellules souches suscitent de très nombreux espoirs. Elles sont potentiellement capables de se différencier en plusieurs types de cellules matures. Elles suscitent de nombreux espoirs dans différents domaines thérapeutiques : la médecine régénérative et les greffes (capable de réparer, voire de remplacer, des cellules ou des organes défectueux) mais aussi la thérapie génique.
On distingue quatre grandes sources de cellules souches :
    ▪    Les cellules souches embryonnaires, qui sont prélevées sur un embryon surnuméraire de 5 à 6 jours ;
    ▪    Les cellules souches périnatales contenues dans le sang de cordon du nouveau-né et dans le placenta, peuvent se différencier en cellules sanguines utilisables pour des greffes, d'où la création depuis quelques années de banques de sang de cordon ;
    ▪    Les cellules souches adultes au niveau de ses tissus et organes, notamment au niveau de la moelle osseuse, du système nerveux ou encore de la pulpe dentaire, qui ont des capacités de différenciation limitées ;
    ▪    Les cellules souches IPS (cellules souches induites à la pluripotence), qui sont des cellules humaines adultes reprogrammées pour se transformer en n'importe quelle cellule et se renouveler à l'infini.
Ces cellules souches, appelées "IPS", sont dites "pluripotentes" : elles peuvent fournir des cellules spécialisées, sur commande, possédant le même patrimoine génétique que les cellules d'origine. Aujourd'hui, la reprogrammation des cellules IPS reste difficile à mettre en oeuvre et suscite des inquiétudes liées au risque de multiplication anarchique (évolution cancéreuse).

 

DOCUMENT             DOCTISSIMO             LIEN

 
 
 
 

LES ARCHITECTES DU VIVANT

 

LES ARCHITECTES DU VIVANT (1998)
Les protéines sont des macromolécules qui sont à la base du fonctionnement cellulaire des organismes vivants. Pour connaître leurs fonctions, il est indispensable de connaître leur structure car leur forme va conditionner leurs fonctions. La cristallographie par diffraction de rayons X est une technique permettant de visualiser les structures moléculaires. Pour des raisons encore inexpliquées, une molécule organique, par mise en solution puis évaporation, va former un dépôt cristallin. Les cristaux, éclairés par un faisceau de rayons X, fournissent un diagramme de diffraction qui permet de reconstituer l'image de la molécule. La source de rayons X utilisée est le rayonnement synchrotron émis par les accélérateurs de particules. Une des applications principales de l'étude des protéines est la mise au point de médicaments. En effet la connaissance de la forme de la zone active d'une molécule permet de synthétiser des inhibiteurs qui, s'insérant dans cette zone, en bloquent la fonction : il est ainsi possible d'inhiber des fonctions indispensables à la survie des virus.

Générique
Réalisateur : TERNAY Jean-François (CNRS AV) Production : CNRS AV, CSI-Science Actualités Production exécutive : CNRS AV Diffuseur : CNRS Images, http://videotheque.cnrs.fr/

 

         VIDEO              CANAL  U            LIEN

 

(si la video n'apparait pas,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

CHRONOTHERAPIE

 

Paris, 18 novembre 2013


Un pas vers la chronothérapie personnalisée pour le traitement du cancer
La chronothérapie des cancers consiste à administrer les traitements à une heure optimale. En effet l'efficacité des médicaments anticancéreux peut doubler, et leur toxicité diminuer de cinq fois selon l'heure d'administration, car l'organisme est régi par des rythmes biologiques précis. Cependant, il existe d'importantes différences de rythmes biologiques entre les individus que la chronothérapie ne savait pas encore prendre en compte. Une étude internationale menée chez des souris et coordonnée par des chercheurs de l'Inserm, du CNRS et de l'université Paris-Sud1 vient d'ouvrir la voie à la personnalisation de la chronothérapie. Dans un article qui vient d'être publié dans la revue Cancer Research, les chercheurs ont montré que l'heure de tolérance optimale à l'irinotécan, médicament anticancéreux largement utilisé, varie de 8 heures selon le sexe et le patrimoine génétique des souris. Ils ont ensuite construit un modèle mathématique permettant de prévoir, pour chaque animal, l'heure optimale d'administration du médicament. Ils comptent désormais tester ce modèle pour d'autres molécules utilisées en chimiothérapie.
Le métabolisme de l'organisme est rythmé sur 24 heures par l'horloge circadienne. De ce fait, à certains moments précis de la journée ou de la nuit, un médicament donné peut s'avérer plus toxique pour les cellules cancéreuses et moins agressif pour les cellules saines. La chronothérapie des cancers, découverte il y a une vingtaine d'années par Francis Lévi part de ce principe pour améliorer l'efficacité des chimiothérapies. Ses recherches ont montré que l'efficacité des médicaments pouvait doubler selon l'heure à laquelle ils sont administrés. De plus, c'est à cette heure optimale que les médicaments se révèlent aussi jusqu'à 5 fois moins toxiques pour l'organisme.

Cependant, les recherches indiquent la nécessité de personnaliser la chronothérapie. En effet, les rythmes biologiques peuvent changer d'un individu à l'autre. Si, pour 50% des patients l'heure optimale est la même, les 50% restants sont soit en avance soit en retard sur cette heure. L'équipe menée par Francis Lévi a voulu mieux comprendre les facteurs qui jouent sur ces différences dans les rythmes biologiques.

Pour cela, les chercheurs ont étudié la toxicité de l'irinotécan, médicament anticancéreux très utilisé dans le traitement du cancer du côlon et du pancréas, en fonction de l'heure d'administration chez des souris mâles et femelles de 4 souches. Ils ont ainsi pu observer, pour la première fois, que l'heure de meilleure tolérance au traitement variait jusqu'à huit heures d'un groupe de rongeurs à l'autre, selon leur sexe et leur patrimoine génétique.

Les chercheurs ont ensuite voulu trouver une méthode permettant de prévoir cette heure optimale indépendamment du sexe et du patrimoine génétique. Pour cela, ils ont mesuré l'expression de 27 gènes dans le foie et le côlon au cours des 24 heures. Ces mesures ont été analysées selon une méthodologie issue de la biologie des systèmes. Les chercheurs ont ainsi construit et validé un modèle mathématique permettant de prédire précisément l'heure à laquelle l'irinotécan est le moins toxique pour l'organisme grâce à la courbe d'expression de deux gènes, appelés Rev-erbα et Bmal1, qui rythment le métabolisme et la prolifération des cellules.

Les chercheurs veulent à présent valider ce modèle pour d'autres molécules utilisées en chimiothérapie. Au-delà de l'expression des gènes, ils voudraient aussi trouver d'autres paramètres physiologiques liés à l'horloge biologique permettant de prédire l'heure optimale des traitements pour chaque patient. Ces travaux devraient permettre d'accroître l'efficacité et la tolérance des traitements, mais aussi améliorer considérablement la qualité de vie des malades.

DOCUMENT                CNRS             LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google