ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

LE SOLEIL

 


SOLEIL
ASTRONOMIE

Historique des principales découvertes sur le Soleil
Le Soleil, une étoile naine
La structure du Soleil
Le cœur du Soleil
La zone radiative du Soleil
La zone convective du Soleil
La photosphère
La chromosphère
La couronne
Le vent solaire
Les anneaux de poussières
L'activité solaire
Taches solaires et facules
Éruption solaire
Boucles
Protubérances
Trous coronaux
Les cycles d'activité solaire
Les relations Soleil-Terre
L'évolution du Soleil
RELIGION
Voir plus
Soleil
(latin populaire soliculus, du latin classique sol, solis)
Soleil
Consulter aussi dans le dictionnaire : soleil
Étoile autour de laquelle gravite la Terre.
ASTRONOMIE

Introduction

Soleil

Soleil  Dimensions comparées du Soleil et des planètes
Le Soleil est l'une des quelque 100 milliards d'étoiles de la Galaxie. Il présente la double caractéristique d'être une étoile extrêmement proche (Proxima du Centaure, l'étoile la plus proche du Système solaire, est 270 000 fois plus lointaine) et du type le plus courant. Son étude constitue de ce fait un moyen d'information permettant d'accéder aux processus fondamentaux d'évolution des étoiles et de vérifier certaines hypothèses et méthodologies utilisées en astrophysique stellaire. L'essentiel de ce que l'on sait du Soleil vient de l'étude de son rayonnement ; toutefois, depuis les années 1970, l'héliosismologie (ou sismologie solaire), qui étudie les modes d'oscillation du Soleil, favorise la connaissance de sa structure interne. Par ailleurs, les observations spatiales viennent désormais utilement compléter celles faites au sol, en autorisant l'étude du Soleil dans des domaines du spectre correspondant à des rayonnements arrêtés par l'atmosphère terrestre : rayonnements γ, X et ultraviolet.
Historique des principales découvertes sur le Soleil

Lorsqu'il découvre, en 1611, la rotation du Soleil en se fondant sur le mouvement des taches solaires, Galilée inaugure les études modernes du Soleil. La première estimation correcte de la taille de celui-ci et de sa distance par rapport à la Terre fut effectuée en France, par l'Académie des sciences, en 1684, grâce aux données obtenues par triangulation à partir de la mesure de la distance de Mars. En effet, cette mesure, faite en 1672 lorsque la planète s'approcha au maximum de la Terre, permit de connaître par une simple application de la troisième loi de Kepler la distance Terre Soleil. La découverte des raies sombres du spectre solaire par Joseph von Fraunhofer, en 1814, et son interprétation physique par Gustav Robert Kirchhoff, en 1859, inaugurèrent l'ère de l'astrophysique solaire, au cours de laquelle l'étude effective de l'état physique et de la composition chimique de la matière solaire devint possible.
Le champ magnétique intense des taches solaires fut découvert par George Ellery Hale en 1908. Le rôle des réactions nucléaires dans la production de l'énergie solaire fut démontré par Jean Perrin en 1919 et ces réactions furent explicitées par Hans Bethe en 1939. Les connaissances sur le Soleil évoluent et ne restent pas figées : le vent solaire ne fut découvert qu'en 1962, et ce n'est que sept ans plus tard que sa source fut identifiée avec les trous coronaux.
Le Soleil, une étoile naine

Le Soleil, comparé aux plus grandes étoiles connues, dont les diamètres sont 1 000 fois supérieurs au sien et dont les masses peuvent atteindre près d'une centaine de fois sa masse, est une étoile tout à fait moyenne, mais c'est un astre de taille respectable par rapport aux minuscules étoiles rouges. Il est donc répertorié dans la classe des étoiles naines. Son spectre, sa température de surface et sa couleur amènent à le classer plus précisément comme une naine G2 V, suivant la classification en usage (G désignant le type spectral, et V la classe de luminosité). La décomposition spectrale de son rayonnement a son maximum à environ 500 nm de longueur d'onde, ce qui lui vaut sa couleur jaune caractéristique.
La structure du Soleil

Soleil
De son cœur jusqu'à sa couronne et à son vent solaire – qui s'étend jusqu'à la Terre et au-delà – qui s'étend jusqu'à la Terre, et au-delà, sa couleur amènent à le classer plus précis.
Le cœur du Soleil

Le poids des couches extérieures du Soleil comprime le gaz de la région centrale, le cœur, pour lui donner une densité qui est environ 160 fois celle de l'eau. La température atteinte est d'environ 15 millions de degrés. Partout à l'intérieur du Soleil, des atomes entrent constamment en collision avec assez d'énergie pour ioniser le gaz, qu'on appelle alors un plasma.
La zone radiative du Soleil

Dans le premier tiers du Soleil, les collisions entre particules sont si violentes qu'elles provoquent des réactions nucléaires, qui libèrent une énergie colossale et donnent au Soleil son éclat habituel. Cette série de réactions provoque la fusion thermonucléaire de l'hydrogène et sa transformation en hélium, suivant plusieurs séquences, dont la principale, qui fournit plus de 90 % de l'énergie totale, est appelée « chaîne proton proton », car elle met en œuvre quatre noyaux d'hydrogène, ou protons (le noyau d'hydrogène étant composé d'un seul proton), pour former un noyau d'hélium. Cette réaction proton proton peut alimenter le Soleil en énergie pendant environ 10 milliards d'années (l'âge du Soleil étant estimé à environ 5 milliards d'années, il lui reste donc encore un temps équivalent à vivre). Les rayons gamma émis par les réactions nucléaires voyagent vers l'extérieur et sont sans cesse absorbés et réémis : c'est la zone radiative. Un photon parcourt en moyenne 1 cm avant d'être capturé ; les absorptions et émissions successives diminuent l'énergie des photons, qui passent à l'état de rayons X, puis ultraviolets, avant de devenir visibles au niveau de la photosphère.
La zone convective du Soleil

Vers 0,8 rayon solaire, comme le poids des couches de gaz extérieures diminue, la densité et la température requises pour maintenir cette couche en équilibre hydrostatique diminuent également rapidement. À une distance du centre du Soleil égale à 0,6 rayon solaire, la température est d'environ 1 million de degrés ; aussi, l'hydrogène et l'hélium ne sont plus complètement ionisés, et les atomes neutres absorbent donc les radiations qui proviennent des zones incandescentes du cœur. Dans cette région, le chauffage et l'expansion des gaz qui s'ensuit permet à ces derniers de se déplacer vers le haut à cause de leur densité plus faible, et la chaleur atteint les couches supérieures. Ainsi, le transport de l'énergie s'effectue par un vaste brassage de matière qui monte, se refroidit, puis redescend : c'est la convection, qui constitue un moyen puissant pour évacuer la chaleur vers l'extérieur.
Le plasma solaire de la zone de convection est à peu près aussi bon conducteur qu'un fil de cuivre à température ambiante. Aussi, lorsqu'un volume important d'une matière de ce type traverse un champ magnétique, comme ici dans le Soleil, il induit un courant électrique considérable, qui déforme le champ primitif au point de l'entraîner dans son mouvement. L'influence mutuelle des champs magnétiques et des plasmas en mouvement est connue sous le terme de magnétohydrodynamique (MHD). La MHD permet d'étudier comment la rotation différentielle modifie les lignes de champ magnétique polaires, les déforme et les amène parallèlement à l'équateur au cours du cycle d'activité du Soleil.
La convection continue à être efficace jusqu'à ce que soient atteintes les couches où la densité est si faible que l'énergie rayonnée par les gaz ascendants peut s'échapper directement dans l'espace. Cette couche est la surface visible du Soleil, la photosphère.
La photosphère

Photosphère du Soleil
L'observation de la photosphère montre un grand nombre de cellules convectives, les granules, dont la taille est d'environ 1 millier de kilomètres. Ces granules « vivent » environ un quart d'heure ; elles sont formées par des gaz ascendants chauds, entourés par des gaz descendants plus froids, se déplaçant à environ 1 km/s.
Il semble que les mouvements convectifs des gaz solaires, en plus du transport de chaleur, aient des effets importants sur la rotation du Soleil, sur son magnétisme et sur la structure des couches situées au-dessus de la photosphère. La convection contribuerait à expliquer le fait que les gaz de la photosphère ne tournent pas de façon rigide : si la période de rotation est d'environ 25 jours à l'équateur, elle s'élève déjà à 1 mois à la latitude de 60°.
Aux abords de la photosphère, la densité du gaz diminue rapidement en altitude, d'un facteur 10 tous les 1 000 km environ. Cette diminution rapide explique le bord net du Soleil, même quand on le voit dans des télescopes, car la couche dans laquelle le gaz perd son opacité et devient transparent n'a que quelques centaines de kilomètres d'épaisseur (ce qui représente moins d'une seconde d'arc quand on l'observe depuis la Terre). Ainsi, la photosphère n'est pas une surface, mais une couche solaire d'environ 300 km d'épaisseur.
La chromosphère

Au-dessus de la photosphère, la température descend jusqu'à un minimum d'environ 4 500 K ; puis, assez curieusement, elle commence à remonter. Pendant quelques secondes, au début et à la fin d'une éclipse totale de Soleil, on peut observer un mince anneau de quelques milliers de kilomètres d'épaisseur autour du disque solaire ; cet anneau brille d'un éclat rosé intense, d'où son nom de chromosphère, c'est-à-dire « sphère de couleur ». Lorsqu'on l'examine au télescope avec un spectrographe à haute résolution, on peut voir que la plupart des émissions chromosphériques proviennent de jets très fins de gaz dirigés vers l'extérieur, les spicules, d'une température d'environ 15 000 K et d'une densité d'environ 1011 particules par centimètre cube. Un spicule a une durée de vie de 5 à 10 minutes ; sa hauteur est en général de 5 000 à 10 000 km, et son épaisseur environ dix fois plus faible. Les gaz se déplacent vers l'extérieur à des vitesses d'environ 25 km/s. Les spicules semblent se situer à la périphérie des cellules de supergranulation, semblables aux granules, mais qui s'étendent sur des diamètres de l'ordre de 30 000 km.
La couronne

Couronne solaire
Au cours d'une éclipse totale, ou à l'aide d'un coronographe, on peut observer l'atmosphère du Soleil, qui s'étend à une distance de plusieurs rayons solaires au-delà de la photosphère et émet une faible lueur, la couronne solaire, 1 million de fois moins brillante que le disque, dans sa partie la plus lumineuse. Cependant, malgré les températures observées dans la chromosphère, la densité de matière décroît si rapidement qu'aucune couronne ne devrait être visible même à proximité de la surface. L'explication de ce phénomène a été trouvée en 1940 lorsqu'on a pu prouver que dans le spectre du rayonnement de la couronne certaines raies non identifiées étaient causées par des corps fortement ionisés, comme le fer ionisé 13 fois, ce qui implique une température de l'ordre du million de degrés. Comme un gaz chaud a moins tendance à être comprimé par les couches supérieures qu'un gaz froid, la température élevée qui règne dans la couronne permet d'expliquer pourquoi cette dernière est si étendue.

Éclipse totale de Soleil, juillet 1981Éclipse totale de Soleil, juillet 1981
Le mécanisme qui porte la couronne à une température aussi élevée est mal connu, et cette question est au centre de nombreuses recherches, notamment à partir de satellites artificiels. Ainsi, le gaz coronal à proximité du Soleil est visible à l'œil nu pendant les éclipses, car il diffuse la lumière photosphérique à partir des électrons du plasma de la couronne. En effet, ce plasma très chaud émet ses propres rayonnements, ultraviolet et X, lorsque des électrons, se déplaçant rapidement, entrent en collision avec des ions d'éléments plus lourds. Le chauffage de la couronne n'est donc pas une simple question de flux de chaleur en provenance de la photosphère plus froide, par conduction, convection ou radiation, car un tel flux irait à l'encontre de la seconde loi de la thermodynamique. Plus vraisemblablement, ce sont des ondes acoustiques ou d'autres formes d'ondes générées par les mouvements gazeux de la photosphère qui transportent l'énergie dans le milieu coronal et la dissipent en la transformant en chaleur, pour équilibrer les pertes subies par la couronne. Une autre explication peut être la dissipation de courants électriques dans le plasma coronal, très conducteur, de la même façon que l'effet Joule élève la température dans un matériau résistant.
Le vent solaire

aurore polaireaurore polaire
La température et la pression des gaz de la couronne sont trop élevées pour que leur effet soit compensé par la gravité solaire. Des particules peuvent ainsi s'échapper dans l'espace, et participer à la formation du vent solaire. Celui-ci est constitué d'électrons (90 %), de neutrons, de quelques noyaux d'hélium et de traces d'éléments plus lourds. En 1983, quand la sonde américaine Pioneer 10 quittait le Système solaire connu, elle détectait encore la présence du vent solaire. Au niveau de l'orbite de la Terre, la vitesse d'expansion du vent solaire est de 300 à 700 km/s, avec une densité de 1 à 10 particules par centimètre cube ; ainsi, la perte de masse du Soleil, due au vent solaire, n'est que de 10−13 masses solaires par an. Néanmoins, le vent solaire a des effets observables sur les couches supérieures de l'atmosphère terrestre, notamment lors des aurores polaires.
Les anneaux de poussières

Le Soleil est entouré d'anneaux, ou de disques, de poussières interplanétaires. L'un de ces anneaux, situé dans le plan de l'orbite de Jupiter, est connu depuis longtemps : il est à l'origine de la « lumière zodiacale ».
En 1983, un autre anneau fut découvert dans la ceinture d'astéroïdes, entre Mars et Jupiter, par IRAS (Infrared Astronomy Satellite, ou satellite artificiel d'observation astronomique dans l'infrarouge). Une équipe d'astronomes japonais et indonésiens découvrit, également en 1983, un troisième anneau à seulement deux diamètres solaires de notre astre.
L'activité solaire

Le Soleil entretient un champ magnétique intense qui influence les structures physiques de la photosphère, de la chromosphère et de la couronne de manière complexe et variable selon les époques : c'est ce qu'on appelle l'activité solaire.
Taches solaires et facules

Les champs magnétiques émergent dans les couches visibles sous l'aspect de boucles toroïdales de flux magnétique. Leur effet le plus évident sur la photosphère est la formation des taches solaires sombres et des facules brillantes, qui caractérisent à ce niveau une région active. Lorsqu'ils sont intenses, ils perturbent la convection, et amoindrissent donc l'efficacité du processus dominant de transport de chaleur jusqu'à la photosphère, d'où la température « basse » et la relative obscurité des taches solaires.
Une région active se développe horizontalement lorsque le « tube magnétique » émerge de la photosphère, en forme de boucle, passant d'une taille de moins de 5 000 km jusqu'à plus de 100 000 km en une dizaine de jours. C'est au cours de cette période de croissance rapide que la probabilité pour que se produise une éruption solaire spectaculaire est la plus forte.
Éruption solaire

Une forte éruption est caractérisée par un rapide accroissement de la brillance, d'un facteur 5 à 10, en quelques minutes, sur une surface considérable de la région active, comme on peut l'observer dans la raie Hα de l'hydrogène émise par la chromosphère. Seules les éruptions très importantes peuvent être décelées en lumière blanche, à cause de la brillance de la photosphère. Les effets les plus violents et les plus spectaculaires de l'éruption ont lieu cependant dans la couronne. Là, les boucles magnétiques qui surmontent les taches et les facules peuvent accroître leur brillance dans les rayonnements X et ultraviolet d'un facteur 100 ou plus. Les particules chargées sont accélérées jusqu'aux vitesses relativistes, et une puissante émission sur des longueurs d'ondes centimétriques est généralement constatée.
Certaines éruptions produisent aussi de fortes explosions radio sur des longueurs d'ondes métriques, et d'importants volumes de plasma sont souvent projetés dans l'espace à des vitesses qui dépassent la vitesse d'échappement – qui est de l'ordre de 600 km/s – udu champ de gravité solaire au niveau de la photosphère. L'événement cataclysmique s'affaiblit lentement, en quelques heures, après avoir libéré une énergie allant jusqu'à 10215 J. Ce mécanisme a été récemment interprété comme un « court-circuit » géant entre des tubes de force du champ magnétique. Les taches solaires durent en général quelques semaines, les grandes, plus durables, pouvant survivre 2 ou 3 mois. Les facules continuent à signaler une région active pendant un peu plus longtemps. Finalement, il semble que les mouvements de convection désordonnés près de la photosphère démantèlent la boucle de flux magnétique et la dispersent en plus petits éléments sur toute la surface de cette dernière.
Loin des régions actives, des champs d'intensités comparables (de 0,1 à 0,2 tesla) sont mesurés, mais ils se restreignent à un réseau polygonal qui coïncide avec les bords des cellules de supergranulation dont il a été fait mention précédemment.
Boucles

Au-dessus de la photosphère, les champs magnétiques d'une région active peuvent être détectés par leur effet sur la répartition des températures et des densités dans la chromosphère et dans la couronne. Là encore, des structures proéminentes en forme de boucles, observées dans les rayonnements X et ultraviolets, montrent comment les lignes de champ s'étendent jusqu'à 100 000 km et davantage au-dessus d'une tache, et reviennent ensuite vers la photosphère, généralement dans le même centre d'activité.
Protubérances

Protubérances solairesProtubérances solaires
Dans d'autres régions de la couronne, d'immenses feuillets de plasma condensé relativement froid (10 000 K, contre 1 à 3 millions dans la couronne), appelés protubérances, sont soutenus par les tubes de champ magnétique jusqu'à des hauteurs qui peuvent dépasser 200 000 km.
Trous coronaux

Dans certaines grandes zones, appelées trous coronaux, l'émission de la couronne est nettement plus faible, ce qui montre une baisse de la densité du plasma, dont la température est de 1 million de degrés au moins. Les observations radioastronomiques indiquent que dans ces régions les lignes de champ magnétiques s'étendent radialement vers l'extérieur et ne forment plus des structures closes, comme dans les boucles et les protubérances. Une partie de la couronne peut alors s'écouler dans l'espace interplanétaire, c'est le vent solaire. Ces trous sont plus fréquents aux pôles solaires, où les lignes magnétiques sont plus facilement ouvertes, mais peuvent descendre parfois jusqu'à l'équateur.
Les cycles d'activité solaire

L'activité solaire présente un cycle d'une période d'environ 22 ans. La propriété la plus facilement observable de ce cycle est la variation, tous les onze ans environ, du nombre de taches solaires. Le cycle de 22 ans semble avoir été assez régulier au cours du xixe s. et même au-delà, mais les témoignages historiques indiquent qu'entre 1640 et 1710 – ce qu'on appelle le minimum de Maunder – aundern appelle le minimum de Maundergnages
Les irrégularités, à long terme, de l'activité solaire peuvent avoir des retombées tangibles sur la Terre, car les flux de particules solaires chargées et le rayonnement ultraviolet sont directement liés au niveau d'activité manifesté par les régions actives, les éruptions et les trous coronaux. Des variations dans ces émissions peuvent affecter, on le sait, les couches supérieures de l'atmosphère et avoir des répercussions importantes sur le climat.
Les relations Soleil-Terre

Le Soleil émet en permanence dans l'espace un flux de particules chargées, le vent solaire. Celui-ci a pour effet de déformer la magnétosphère terrestre, qui est comprimée du côté du Soleil et étirée dans la direction opposée. Mais ce régime peut être brutalement perturbé en période d'activité solaire, quand le Soleil émet des bouffées de plasma plus énergétique : l'arrivée massive de ces particules dans l'environnement terrestre provoque alors la formation d'aurores polaires et d'orages magnétiques.
Par ailleurs, on sait que la Terre est soumise à des variations d'ensoleillement liées à sa rotation sur elle-même (alternance des jours et des nuits) et à sa translation autour du Soleil (cycle des saisons). Sur des intervalles de temps plus longs, on a pu établir que les variations de l'excentricité de son orbite et de l'inclinaison de son axe de rotation avaient également des répercussions climatiques (théorie de Milanković). Il est légitime de se demander si le Soleil lui-même et son rayonnement n'ont pas des fluctuations suffisantes pour avoir un impact sur le climat de la Terre. Les observations spatiales ont mis en évidence de légères fluctuations (0,2 %) de la constante solaire, c'est-à-dire du flux d'énergie solaire reçu au sommet de l'atmosphère, perpendiculairement par unité de temps et de surface, en fonction du cycle de l'activité solaire. Mais on n'a pu encore clairement établir de lien entre ces variations et celles de la température sur la Terre.
L'évolution du Soleil

Depuis 4,6 milliards d'années, le Soleil est alimenté en énergie par la fusion d'hydrogène en hélium. Dans 3,5 milliards d'années, il aura brûlé la quasi-totalité de l'hydrogène de son noyau. La production d'énergie nucléaire cessant, la matière se contractera, ce qui provoquera une augmentation interne de la température et de la pression. Les couches extérieures se dilateront et la température de la photosphère baissera : le Soleil deviendra une géante rouge. Son rayon pourra alors atteindre la moitié de la distance de la Terre au Soleil mais notre planète se sera alors éloignée à 250 millions de km de son étoile. En effet, le Soleil ayant perdu près de 40% de sa masse par suite de l'échappement du vent solaire, la Terre sera alors soumise à une plus faible attraction. Cet éloignement relatif ne compensera pas l'énorme accroissement de luminosité du Soleil. Dans le cœur de l'étoile, lorsque la température atteindra 100 millions de degrés, la fusion de l'hélium, produisant du carbone et de l'oxygène, se déclenchera et se propagera vers l'extérieur.
Quelques milliards d'années plus tard, l'hélium sera épuisé à son tour et, la production d'énergie nucléaire cessant, le Soleil se contractera à nouveau. Les réactions nucléaires reprendront alors dans deux zones : en surface, transformation de l'hydrogène en hélium, et à l'intérieur, de l'hélium en carbone et oxygène. Sous la pression intense du rayonnement, de la matière sera éjectée. Le rayon du Soleil se réduira à une dizaine de milliers de kilomètres. Dans le même temps, sa température de surface passera à une centaine de milliers de kelvins. Le Soleil finira ainsi son existence sous les traits d'une naine blanche dont le rayonnement faiblira peu à peu. Quant à la matière éjectée, elle se dispersera dans le milieu interstellaire où elle donnera naissance, ultérieurement, à de nouvelles étoiles.
RELIGION

Le culte du Soleil, assez répandu dans diverses sociétés anciennes, a eu un succès tout particulier en Égypte pharaonique, en tant que puissance fécondante. Rê représentait l'astre solaire, et Aton le disque solaire. Dans la ville sainte d'Héliopolis s'étaient élaborés mythes et systèmes théologiques et, dès la IVe dynastie, certains pharaons se sont qualifiés de fils de Rê. Aménophis IV organisa un nouveau culte solaire avec le syncrétisme Amon-Rê.

  DOCUMENT   larousse.fr    LIEN

 
 
 
 

LE TÉLESCOPE BINOCULAIRE

 

    

LBT : premiers clichés du plus puissant télescope terrestre


Au terme de huit ans de construction, le grand télescope binoculaire LBT, situé sur le mont Graham en Arizona, a ouvert l'un de ses yeux et a fourni le 12 Octobre dernier ses premiers clichés. Ceux-ci concernent la galaxie en spirale NGC891, située à 24 millions d'années-lumière de la Terre, dans la constellation d'Andromède. Pour les astronomes, le miroir de 8,4 mètres de diamètre du télescope a délivré des images d'une acuité remarquable, et a prouvé que le LBT est apte à relever son défi : surpasser Hubble et se poser en concurrent direct des réseaux interférométriques géants Keck et VLT.

Astronome dans la salle de contrôle du LBT, le 12 Octobre 2005
Crédit : Large Binocular Telescope Corporation

LBT : le concurrent direct des grands interféromètres actuels
« Le LBT nous ouvrira de nouvelles possibilités dans l'exploration des planètes extrasolaires », se sont enthousiasmés Thomas Henning et Tom Herbst, de l'institut Max Planck d'Heidelberg, après observation des premières images délivrées par le télescope.
Inauguré en octobre 2004, le LBT (Large Binocular Telescope) est le fruit d'un projet commun des universités et d'une quinzaine de laboratoires et instituts de recherche américains, allemands et italiens. D'un coût global de 120 millions de dollars, il a été financé à hauteur de 50% par les Etats-Unis.
Construit sur un bâti d'élévation azimutale de près de 380 tonnes, il accueille deux miroirs en verre borosilicaté de 331 pouces de diamètre (8,4 mètres), espacés centre à centre de 14,4 mètres. Par soucis d'allègement de la masse de verre, le moule utilisé pour leur fabrication était constitué de mille six cents tuiles réfractaires dessinant une structure en nid d'abeille, dans laquelle on a « coulé » le verre porté à 1100 degrés celsius. Grâce à ce protocole révolutionnaire, ces miroirs de 16 tonnes chacun sont aujourd'hui les plus légers en regard de leur diamètre, mais aussi les plus grands de type alvéolés jamais construits (le précédent record était détenu par les deux télescopes Magellan, de 6,5 mètres de diamètre). En outre, ils sont également les plus lumineux : avec une focale de 9,5 m, leur rapport focale sur diamètre n'est que de 1,14 !

Miroir primaire du LBT, de 8,4 mètres de diamètre 
Crédit : Large Binocular Telescope Corporation
Si chaque miroir constitue à lui seul un télescope performant, l'objectif du LBT est de fonctionner comme interféromètre. En effet, dans cette configuration optique, il permet d'égaler la résolution d'un télescope de 22,8 mètres de diamètre.

Si les performances d'imagerie des grands interféromètres actuels (VLT, Keck…) restent limitées aux astres brillants et aux formes simples, du fait de leur haute dilution optique (le rapport entre le diamètre virtuel et la surface optique réelle), le LBT, quant à lui, avec son diamètre équivalent de 22,8 mètres pour une surface optique de 11,8 mètres, doit permettre de photographier en temps réel les corps célestes éloignés. Ainsi, en mode interférométrique, ses clichés devraient être dix fois plus clairs que ceux du télescope spatial Hubble.

Des premiers clichés très encourageants
Dans la nuit du 12 Octobre, pour sa première expérimentation, le télescope s'est tourné vers la constellation d'Andromède, et plus précisément vers la galaxie NGC891, qui s'étend à 24 millions d'années lumière de la Terre. Ces clichés exceptionnels ont été obtenus avec l'un des miroirs primaires du télescope, le second ayant été récemment transporté de l'université de l'Arizona vers le mont Graham.
Les images ont été capturées à l'aide d'un « appareil photo » dernier cri connu sous le nom de Large Binocular Camera (LBC), placé en surplomb du miroir primaire, au foyer principal du télescope. Conçu par les collaborateurs italiens, le LBC agit comme un appareil photo numérique d'une précision remarquable de 36 mégapixels (en regard des 5 mégapixels en moyenne des appareils-photo "du commerce").

D'après ses créateurs, le LBT sera totalement opérationnel en 2006, et pourra ouvrir grands ses yeux sur la création de l'univers. Avec ses performances inégalées, il permettra aux astronomes d'observer des galaxies éloignées avec une précision et une clarté encore jamais obtenues et permettra assurément des avancées significatives sur le mécanisme de création des étoiles et l'observation des confins de l'univers.

 

  DOCUMENT      futura-sciences.com    LIEN

 
 
 
 

PLANK -MATIÈRE NOIRE - NEUTINOS FOSSILES

 

Paris, 1er décembre 2014


Planck : nouvelles révélations sur la matière noire et les neutrinos fossiles


La collaboration Planck, qui implique notamment le CNRS, le CEA, le CNES et plusieurs universités françaises, dévoile à partir d'aujourd'hui à la conférence de Ferrara (Italie) les résultats des quatre années d'observation du satellite Planck de l'Agence spatiale européenne (ESA), dédié à l'étude du « rayonnement fossile », la plus vieille lumière de l'univers. Pour la première fois, la plus ancienne image de notre univers est mesurée précisément selon deux paramètres de la lumière (en intensité et en polarisation1), sur l'ensemble de la voûte céleste. Cette lumière primordiale nous permet de « voir » les particules les plus insaisissables : la matière noire et les neutrinos fossiles.
De 2009 à 2013, le satellite Planck a observé le rayonnement fossile, la plus ancienne image de l'univers, encore appelé fonds diffus cosmologique. Aujourd'hui, avec l'analyse complète des données, la qualité de la carte obtenue est telle que les empreintes laissées par la matière noire et les neutrinos primordiaux, entre autres, sont clairement visibles.

Déjà, en 2013 la carte des variations d'intensité lumineuse avait été dévoilée, nous renseignant sur les lieux où se trouvait la matière 380 000 ans après le Big-Bang. Grâce à la mesure de la polarisation de cette lumière (pour le moment dans 4 des 7 canaux2), Planck est capable de voir comment cette matière bougeait. Notre vision de l'univers primordial devient alors dynamique. Cette nouvelle dimension et la qualité des données permettent de tester de nombreux paramètres du modèle standard de la cosmologie. En particulier, elles éclairent aujourd'hui ce qu'il y a de plus insaisissable dans l'univers : la matière noire et les neutrinos.

De nouvelles contraintes sur la matière noire
 
Les résultats de la collaboration Planck permettent à présent d'écarter toute une classe de modèles de matière noire, dans lesquels l'annihilation matière noire - antimatière noire serait importante. L'annihilation entre une particule et son antiparticule3 désigne la disparition conjointe de l'une et de l'autre, qui s'accompagne d'une libération d'énergie.

L'idée de matière noire commence à être largement admise mais la nature des particules qui la composent reste inconnue. Les modèles sont nombreux en physique des particules et l'un des buts aujourd'hui est de réduire le champ des possibles en multipliant les voies d'exploration, par exemple en recherchant des effets de cette matière mystérieuse sur la matière ordinaire et la lumière. Les observations de Planck montrent qu'il n'est pas nécessaire de faire appel à l'existence d'une forte annihilation matière noire - antimatière noire pour expliquer la dynamique des débuts de l'univers. En effet, un tel mécanisme produirait une quantité d'énergie qui influerait sur l'évolution du fluide lumière-matière, en particulier aux périodes proches de l'émission du rayonnement fossile. Or, les observations les plus récentes n'en portent pas la trace.

Ces nouveaux résultats sont encore plus intéressants lorsqu'ils sont confrontés aux mesures réalisées par d'autres instruments. Les satellites Fermi et Pamela, tout comme l'expérience AMS-02 à bord de la station spatiale internationale, ont observé un excès de rayonnement cosmique, pouvant être interprété comme une conséquence de l'annihilation de matière noire. Compte tenu des résultats de Planck, il va falloir préférer une explication alternative à ces mesures d'AMS-02 ou de Fermi  (par exemple l'émission de pulsars non détectés) si l'on fait l'hypothèse – raisonnable – que les propriétés de la particule de matière noire sont stables au cours du temps.

Par ailleurs, la collaboration Planck confirme que la matière noire occupe un peu plus de 26 % de l'univers actuel (valeur issue de son analyse en 2013), et précise la carte de la densité de matière quelques milliards d'années après le Big-Bang, grâce aux mesures en température et en polarisation en modes B.

Les neutrinos des premiers instants décelés

Les nouveaux résultats de la collaboration Planck portent aussi sur un autre type de particules très élusives : les neutrinos. Ces particules élémentaires « fantômes », produites en abondance dans le Soleil par exemple, traversent notre planète pratiquement sans interaction, ce qui rend leur détection extrêmement difficile. Il n'est donc pas envisageable de détecter directement les premiers neutrinos, produits moins d'une seconde après le Big-Bang, qui sont  extrêmement peu énergétiques. Pourtant, pour la première fois, Planck a détecté sans ambiguïté l'effet de ces neutrinos primordiaux sur la carte du rayonnement fossile.

Les neutrinos primordiaux décelés par Planck ont été libérés une seconde environ après le Big-Bang, lorsque l'univers était encore opaque à la lumière mais déjà transparent à ces particules qui peuvent s'échapper librement d'un milieu opaque aux photons, tel que le cœur du Soleil. 380 000 ans plus tard, lorsque la lumière du rayonnement fossile a été libérée, elle portait l'empreinte des neutrinos car les photons ont interagi gravitationnellement4 avec ces particules. Ainsi, observer les plus anciens photons a permis de vérifier les propriétés des neutrinos.

Les observations de Planck sont conformes au modèle standard de la physique des particules. Elles excluent quasiment l'existence d'une quatrième famille de neutrinos5 auparavant envisagée d'après les données finales du satellite WMAP, le prédécesseur américain de Planck. Enfin, Planck permet de fixer une limite supérieure à la somme des masses des neutrinos, qui est à présent établie à 0.23 eV (électronvolt)6.


Les données de la mission complète et les articles associés qui seront soumis à la revue Astronomy & Astrophysics (A&A) seront disponibles dès le 22 décembre 2014 sur le site de l'ESA. Ces résultats sont notamment issus des mesures faites avec l'instrument haute fréquence HFI conçu et assemblé sous la direction de l'Institut d'astrophysique spatiale (CNRS/Université Paris-Sud) et exploité sous la direction de l'Institut d'astrophysique de Paris (CNRS/UPMC) par différents laboratoires impliquant le CEA, le CNRS et les universités, avec des financements du CNES et du CNRS.

 

DOCUMENT           CNRS        LIEN

 
 
 
 

ÉNERGIE NOIRE

 

MATIÈRE NOIRE ET ÉNERGIE SOMBRE : QUE VA NOUS APPRENDRE EUCLID ?


La découverte de l'accélération de l'expansion de l'Univers conduit les cosmologistes à postuler l'existence d'une énergie noire qui serait la composante dominante du contenu en matière-énergie de l'Univers actuel. Ainsi, 95% de l'Univers seraient constitués de matière noire et d'énergie noire dont les natures nous sont totalement inconnues. Elles présentent pour les physiciens des enjeux passionnants, d'où pourrait voir naître une nouvelle physique fondamentale autour de ces deux composantes. La mission spatiale de l'ESA Euclid a été sélectionnée par l'Agence Spatiale Européenne pour apporter des réponses concernant la vraie nature de l'Univers noir et révéler la physique nouvelle sous-jacente. Au cours de cette conférence, je présenterai les enjeux scientifiques et techniques de cette mission de haute précision particulièrement complexe, et ce qu'elle devrait nous apprendre sur la matière noire, l'énergie noire, l'histoire de l'Univers et son devenir.

 

 VIDEO        CANAL  U         LIEN

 

 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google