|
|
|
|
 |
|
Symbioses entre plantes, champignons et bactéries : un éclairage original sur ces alliances ancestrales |
|
|
|
|
|
Symbioses entre plantes, champignons et bactéries : un éclairage original sur ces alliances ancestrales
Des chercheurs de l’Inra, associant les universités de Lorraine et de Toulouse, et le CNRS, ont reconstitué l’histoire évolutive des symbioses mycorhiziennes et fixatrices d’azote. Leur travail de synthèse apporte un éclairage original sur les symbioses à bénéfice mutuel et sur les mécanismes moléculaires et cellulaires impliqués dans la colonisation des racines des plantes par les microorganismes. Une meilleure compréhension de ces mécanismes et de leur modulation par différents facteurs, tels que le génotype de la plante ou le type de sol, devrait faciliter l’utilisation du microbiote des plantes dans le cadre d’une agriculture durable. L’article est publié dans Science le 26 mai 2017.
Des chercheurs des centres Inra de Grand-Est-Nancy et Occitanie-Toulouse associés aux universités de Lorraine et de Toulouse en collaboration avec le Laboratoire des interactions plantes-microorganismes (Inra/CNRS), publient le 26 mai 2017 un article de synthèse sur les symbioses mutualistes entre plantes et microorganismes, mettant en perspective leur évolution et les mécanismes moléculaires et cellulaires qui contrôlent leur développement. L’intérêt de cette analyse réside dans la comparaison de plusieurs symbioses emblématiques : la symbiose mycorhizienne à arbuscules, l’ectomycorhize et les symbioses fixatrices d’azote à rhizobiacées et à Frankia.
Depuis leur colonisation des continents à l’Ordovicien il y a plus de 450 millions d’années, les plantes sont en interaction constante avec un cortège complexe de microorganismes (le microbiote) que ce soit dans leurs tissus (endosphère) ou à leur surface (rhizosphère, phyllosphère). Une partie de ces microorganismes se singularise par leur capacité à établir une relation mutualiste avec les plantes. Ils stimulent ainsi la nutrition de leur plante-hôte. C’est notamment le cas des champignons mutualistes mycorhiziens et des bactéries symbiotiques fixatrices d’azote. L’analyse des fossiles de plantes n’a pas encore permis de visualiser les structures développées lors de la symbiose fixatrice d’azote par les bactéries. Au contraire, de nombreux fossiles de plantes primitives ont confirmé que les premières plantes terrestres étaient déjà associées aux champignons mycorhiziens, les Gloméromycètes. Nul doute que ces microorganismes symbiotiques ont contribué au succès de la colonisation des continents par les plantes en augmentant considérablement la capacité d’absorption des racines explorant les sols primitifs très pauvres en éléments nutritifs.
Les chercheurs discutent les grandes étapes de l’évolution des symbioses mutualistes et comparent les mécanismes impliqués dans la colonisation des plantes-hôtes. Bien qu’impliquant des bactéries ou des champignons, les mécanismes moléculaires et cellulaires déployés lors des premières étapes de colonisation de la plante-hôte sont très voisins. De façon surprenante, les signaux diffusibles à base de chitine et la cascade de signalisation de la symbiose mycorhizienne contractée entre les premières plantes terrestres et les champignons Gloméromycètes, il y a plus de 400 millions d’années, ont été recrutés par les bactéries formant des nodosités fixatrices d’azote avec les légumineuses. Sont également impliqués des modifications de la balance hormonale de la racine et divers mécanismes pour éviter le déclenchement de la défense immunitaire de la plante-hôte.
Les auteurs suggèrent que l’étude de ces symbioses mutualistes complexes pourrait permettre de mieux comprendre les interactions des plantes avec la multitude de microbes qu’elles hébergent. Cette meilleure compréhension des signaux et des mécanismes impliqués dans le développement symbiotique et leur modulation par différents facteurs (génotype de la plante, type de sol) devrait faciliter l’utilisation du microbiote des plantes dans le cadre d’une agriculture durable, par exemple en optimisant la croissance des plantes tout en diminuant l’apport d’engrais azotés et phosphatés dans les agrosystèmes et en favorisant la séquestration du carbone en forêt.
DOCUMENT cnrs LIEN |
|
|
|
|
 |
|
La mélatonine maternelle est un horoscope endocrinien |
|
|
|
|
|
La mélatonine maternelle est un horoscope endocrinien
La mélatonine, une hormone dont la production nocturne varie pendant l’année, synchronise les fonctions biologiques avec les saisons chez l’adulte. L’équipe de Valérie Simonneaux à l’Institut des neurosciences cellulaires et intégratives, montre comment les changements saisonniers de la mélatonine maternelle, connue pour traverser la barrière placentaire, agit sur la production d’hormones thyroïdiennes dans l’hypothalamus des fœtus de rongeurs pour programmer leur développement futur. Cette étude a été publiée le 17 juillet 2017 dans la revue PNAS.
La mélatonine est une hormone des saisons car sa production nocturne est d’autant plus importante que les nuits sont longues (en hiver). Son rôle dans la synchronisation saisonnière des fonctions biologiques comme la reproduction, la prise alimentaire ou le sommeil est bien établi chez les adultes. L’équipe de Valérie Simonneaux, en collaboration avec David Hazlerigg à l’Université de Tromso (Norvège), a étudié les mécanismes par lesquels la mélatonine maternelle affecte également le développement fœtal et ceci différemment selon les saisons.
Avant la naissance, les fœtus ne produisent pas de mélatonine mais ont déjà des récepteurs fonctionnels qui peuvent être activés par la mélatonine maternelle capable de traverser la barrière placentaire. La mélatonine maternelle régule différemment le développement métabolique et reproducteur de petits hamsters sibériens selon que la période de gestation et de lactation de leurs mères s’est déroulée en photopériode courte (hivernale) ou en photopériode longue (estivale). Les chercheurs ont montré que la mélatonine maternelle agit sur l’hypophyse du fœtus en développement pour contrôler, via la production de thyréostimuline (TSH), l’expression d’enzymes impliquées dans le métabolisme des hormones thyroïdiennes et localisées dans des cellules gliales spécialisées, les tanycytes de l’hypothalamus. Ainsi à la naissance, les petits issus de mères gestantes en photopériode courte ont une production d’hormones thyroïdiennes hypothalamiques inférieure à celle des petits issus de mères gestantes en photopériode longue.
Cette régulation différentielle par la mélatonine maternelle programme la sensibilité des tanycytes à la TSH après la naissance. En effet, lorsque les hamsters sont ensuite élevés en conditions environnementales similaires, les jeunes issus de mères gestantes en photopériode courte ont une sensibilité des tanycytes à la TSH augmentée qui se traduit par une production accrue d’hormones thyroïdiennes localement dans l’hypothalamus. Cette hyperthyroïdie locale est associée à une accélération du développement des systèmes métabolique et reproducteur des petits nés en photopériode courte.
Les résultats de cette étude décrivent une nouvelle voie transplacentaire codant un calendrier interne qui programme le développement des fonctions cérébrales.
Cette étude a bénéficié d'un co-financement du CNRS et de l'Université de Strasbourg.
Figure : La production de mélatonine par la glande pinéale est plus importante en hiver (photopériode courte) qu’en été (photopériode longue). La mélatonine maternelle qui traverse la barrière placentaire aura par conséquent des effets différentiels sur le développement fœtal selon que la gestation ait lieu en hiver ou en été. Ainsi, le développement métabolique et reproducteur de hamsters sibériens issus de mères gestantes en photopériode courte est plus rapide que celui de hamsters issus de mères gestantes en photopériode longue, même si les deux groupes de hamsters sont élevés en conditions environnementales similaires après le sevrage. Cet effet programmateur de la mélatonine maternelle s’exerce via une plus grande sensibilité à la thyréostimuline (TSH) des tanycytes de l’hypothalamus pour activer la déiodinase 2 (DIO2) et donc la production d’hormone thyroïdienne (T3) chez les hamsters nés de mères gestantes en photopériode courte.

En savoir plus
* Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland.
Cristina Sáenz de Miera, Béatrice Bothorel, Catherine Jaeger, Valérie Simonneaux, and David Hazlerigg
PNAS 2017 ; published ahead of print July 17, 2017, doi:10.1073/pnas.1702943114

Contacts chercheurs
* Valérie Simonneaux
Neurobiologie des Rythmes
Equipe Mélatonine et Rythmes Saisonniers
Institut des Neurosciences Cellulaires et Intégratives
CNRS UPR-3212 – Université de Strasbourg
5, rue Blaise Pascal
67084 Strasbourg
03 88 45 66 71 / 06 60 64 23 78
DOCUMENT cnrs LIEN
|
|
|
|
|
 |
|
Pandoravirus : des virus géants qui inventent leurs propres gènes |
|
|
|
|
|
Pandoravirus : des virus géants qui inventent leurs propres gènes
COMMUNIQUÉ | 11 JUIN 2018 - 15H44 | PAR INSERM (SALLE DE PRESSE)
BASES MOLÉCULAIRES ET STRUCTURALES DU VIVANT | CANCER | GÉNÉTIQUE, GÉNOMIQUE ET BIO-INFORMATIQUE | IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE
La famille de virus géants pandoravirus s’enrichit de trois nouveaux membres, isolés par des chercheurs du laboratoire Information génomique et structurale (CNRS/Aix‐Marseille Université), associés au laboratoire Biologie à grande échelle (CEA/Inserm/Université Grenoble‐Alpes) et au CEA-Genoscope. Lors de sa découverte1, cette famille de virus avait étonné par son étrangeté – génomes géants, nombreux gènes sans équivalent connu. Dans Nature Communications le 11 juin 2018, les chercheurs proposent une explication : les pandoravirus seraient des fabriques à nouveaux gènes – et donc à nouvelles fonctions. De phénomènes de foire à innovateurs de l’évolution, les virus géants continuent de secouer les branches de l’arbre de la vie !
En 2013, la découverte de deux virus géants ne ressemblant à rien de connu brouillait la frontière entre monde viral et monde cellulaire[1]. Ces pandoravirus sont aussi grands que des bactéries et dotés de génomes plus complexes que ceux de certains organismes eucaryotes[2]. Mais leur étrangeté – une forme inédite d’amphore, un génome énorme[3] et atypique – posait aussi la question de leur origine.
La même équipe a depuis isolé trois nouveaux membres de la famille à Marseille, Nouméa et Melbourne. Avec un autre virus trouvé en Allemagne, cela fait désormais six cas connus que l’équipe a comparés par différentes approches. Ces analyses montrent que, malgré une forme et un fonctionnement très similaires, ils ne partageant que la moitié de leurs gènes codant pour des protéines. Or, les membres d’une même famille ont généralement bien plus de gènes en commun…
De plus, ces nouveaux membres de la famille possèdent un grand nombre de gènes orphelins, c’est‐à‐dire codant pour des protéines sans équivalent dans le reste du monde vivant (c’était déjà le cas pour les deux premiers pandoravirus découverts). Cette caractéristique inexpliquée est au cœur de tous les débats sur l’origine des virus. Mais ce qui a le plus étonné les chercheurs, c’est que ces gènes orphelins sont différents d’un pandoravirus à l’autre, rendant de plus en plus improbable qu’ils aient été hérités d’un ancêtre commun à toute la famille !
Analysés par différentes méthodes bioinformatiques, ces gènes orphelins se sont révélés très semblables aux régions non‐codantes (ou intergéniques) du génome des pandoravirus. Face à ces constats, un seul scénario pourrait expliquer à la fois la taille gigantesque des génomes des pandoravirus, leur diversité et leur grande proportion de gènes orphelins : une grande partie des gènes de ces virus naîtrait spontanément et au hasard dans les régions intergéniques. Des gènes « apparaissent » donc à des endroits différents d’une souche à l’autre, ce qui explique leur caractère unique.
Si elle est avérée, cette hypothèse révolutionnaire ferait des virus géants des artisans de la créativité génétique, qui est un élément central, mais encore mal expliqué, de toutes les conceptions de l’origine de la vie et de son évolution.
[1] Communiqué de presse du 18 juillet 2013 : http://www2.cnrs.fr/presse/communique/3173.htm
[2] Organismes dont les cellules sont dotées de noyaux, contrairement aux deux autres règnes du vivant, les bactéries et les archées.
[3] Jusqu’à 2,7 millions de bases.
Voir aussi « Behind the paper: Giant pandoraviruses create their own genes » sur le blog natureecoevocommunity.nature.com
Ces recherches ont bénéficié, entre autres, d’un financement de la Fondation Bettencourt Schueller à Chantal Abergel, lauréate 2014 du prix « Coup d’élan pour la recherche française ».
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Selon le sexe et l’âge, les cellules immunitaires du cerveau réagissent différemment à des perturbations du microbiote |
|
|
|
|
|
Selon le sexe et l’âge, les cellules immunitaires du cerveau réagissent différemment à des perturbations du microbiote
COMMUNIQUÉ | 21 DÉC. 2017 - 18H00 | PAR INSERM (SALLE DE PRESSE)
BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION
Une étude conjointe entre des chercheurs Inserm de l’IBENS (Institut de biologie de l’Ecole Normale Supérieure – Inserm/CNRS/ENS Paris) à Paris et des chercheurs du SIgN (Singapore Immunology Network, A*STAR) de Singapour montre un rôle inédit du microbiote sur des cellules immunitaires du cerveau dès le stade fœtal. Ces cellules immunitaires, les microglies, jouent un rôle clé dans le développement et le fonctionnement cérébral et sont différemment perturbées par des modifications du microbiote chez les souris mâles et femelles à différents stades de la vie. Les résultats de ces travaux sont publiés dans la revue Cell.
Les microglies sont des cellules immunitaires qui répondent à des traumatismes ou des signaux inflammatoires pour protéger le cerveau, agissant comme des senseurs capables de détecter de nombreux signaux environnementaux. Ces cellules immunitaires sont également impliquées dans différentes étapes du développement et du fonctionnement cérébral. Ainsi, des dysfonctionnements de ces cellules sont associés à un large spectre de pathologies humaines, allant des troubles neuro-développementaux jusqu’aux maladies neurodégénératives. Les microglies jouent donc un rôle crucial dans le fonctionnement normal et pathologique du cerveau, ce qui laisse suggérer qu’elles constituent une interface régulatrice entre les circuits cérébraux et l’environnement.
Pour tester cette hypothèse, Morgane Thion et Sonia Garel, chercheuses Inserm, et leurs collaborateurs, ont utilisé une approche multidisciplinaire sur des modèles de souris axéniques, qui n’ont pas de microbiote (ensemble des bactéries présentes dans l’organisme) et des modèles de souris adultes traitées avec un cocktail d’antibiotiques (qui détruisent de façon aigue le microbiote). En combinant analyses génomiques globales et études histologiques, les chercheurs ont montré que les microglies sont profondément affectées par un dysfonctionnement du microbiote, dès les stades prénataux et ce, en fonction du sexe de l’animal : les microglies appartenant à des mâles semblent affectées au stade prénatal alors que les microglies issues de femelles le sont à l’âge adulte. Ce surprenant dimorphisme sexuel fait écho au fait que l’occurrence de nombreuses pathologies neurodéveloppementales est plus élevée chez les hommes alors que les maladies auto-immunes sont plutôt prévalentes chez les femmes.
Si les mécanismes impliqués et les conséquences fonctionnelles restent à découvrir, cette étude révèle un rôle clé des microglies à l’interface entre environnement et cerveau et montre que les mâles et femelles auraient des susceptibilités différentes à des altérations du microbiote. Pour les auteurs, ces éléments mériteraient maintenant d’être pris en considération au niveau clinique et ce, dès les stades fœtaux.
DOCUMENT inserm LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante |
|
|
|
|
|
|