ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

LES MATÉRIAUX MOLÉCULAIRES

 

 

 

 

 

 

 

LES MATÉRIAUX MOLÉCULAIRES

L' histoire de l'humanité est scandée par la nature des matériaux que l'homme est capable d'élaborer et d'utiliser pour répondre à ses besoins. Notre époque est marquée par une explosion de la création de nouveaux matériaux, de plus en plus conçus pour répondre à un besoin très précis. Dans ce contexte, les matériaux réalisés à partir de molécules peuvent faire valoir de nombreux avantages : ils sont le plus souvent de faible densité, transparents ou colorés à la demande, solubles, biocompatibles, faciles à mettre en forme, etc. La flexibilité de la chimie moléculaire permet de produire pratiquement " à la carte " de nouvelles molécules et de nouveaux édifices moléculaires en variant de manière de plus en plus subtile structures, structures électroniques et propriétés. Les synthèses sont guidées par les besoins en nouveaux matériaux de structure ou en matériaux fonctionnels. Notre vie quotidienne est ainsi entourée de matériaux moléculaires familiers qu'ils soient d'origine naturelle ou industrielle, créations de l'homme. L'exposé les identifie, illustre et commente quelques unes de leurs propriétés et leurs multiples domaines d'application. Dans le même temps, une recherche pluridisciplinaire se poursuit pour obtenir des matériaux présentant des propriétés inédites, voire des propriétés multiples au niveau macroscopique (grands ensembles de molécules) ou au niveau d'une seule molécule (électronique moléculaire, machines moléculaires
…). Quelques aspects de ces recherches sont présentés, en mettant en évidence les principes fondamentaux sur lesquels repose la synthèse des molécules et des édifices moléculaires présentant des propriétés données, les techniques récentes qui permettent un progrès plus rapide en matière de matériaux moléculaires, les contraintes qui s'exercent sur la production de ces matériaux et les perspectives qui s'ouvrent dans un domaine où la riche complexité des matériaux biologiques constitue une matière première et un exemple, une source de réflexion et d'espoir permanents.

Texte de la 240e conférence de l’Université de tous les savoirs donnée le 27 août 2000.Les matériaux moléculaires ou : de la molécule au matériau …par Michel Verdaguer Il est trivial de dire que la notion de matériau a scandé l’histoire de l’humanité : les « âges » qui structurent l’histoire de l’homme portent le nom de matériaux : âge de la pierre, âge du bronze, âge du fer, âge du silicium ou du nylon. Un seul de ces matériaux est un matériau (macro)moléculaire, c’est le nylon, mais c’est le plus récent, le plus complexe, le plus seyant[1]. Qu'est-ce qu'un matériau moléculaire ? Avant toute chose, il est souhaitable de définir ce que l’on entend par matériau moléculaire. Un matériau moléculaire est un matériau constitué de molécules[2]. Une molécule est un ensemble d’atomes reliés entre eux par des liaisons chimiques covalentes. Un matériau est une substance utile qui, convenablement mise en forme, est insérée dans un dispositif pour y remplir une fonction grâce à ses propriétés. C'est souvent un solide. Les matériaux moléculaires sont d'une grande diversité, de la nappe de l’incroyable pique-nique du 14 juillet 2000 (composite de polymères) aux dispositifs d’affichage des écrans de micro-ordinateurs (cristaux liquides). Les matériaux moléculaires parmi les autres matériaux Les grandes classes de matériaux utilisés par l'homme sont les métaux, les céramiques, les polymères[3]. Cette classification, pour une part arbitraire, ne comporte pas de matériau moléculaire au sens strict. Mais les polymères sont des molécules géantes (macromolécules). Chaque type de matériau a des propriétés caractéristiques (mécaniques, physiques, chimiques), correspondant à la structure et au type de liaison concerné : les métaux (liaison métallique) sont des assemblages d'atomes. Ils sont conducteurs, durs, à température de fusion élevée, malléables, ductiles, denses, réfléchissants et opaques. Les céramiques (liaison ionique) sont des assemblages d'ions isolants, réfractaires, denses, résistants mécaniquement et thermiquement mais cassants et fragiles. Les polymères (liaison covalente) sont légers, faciles à mettre en forme, isolants, peu rigides, souvent peu stables à la température. Quand un besoin n'est pas couvert par les grandes classes de matériaux, on fait appel à des composites, mélange complexe de matériaux ou on en crée de nouveaux. Il existe une véritable science des matériaux qui les étudie, les améliore et les crée[4]. Parmi les matériaux nouveaux, figurent précisément les matériaux moléculaires. Contrairement aux céramiques et aux métaux, obtenus à très haute température (donc coûteux en énergie), les matériaux moléculaires et les polymères sont obtenus dans des conditions douces de température et de pression. Ils sont légers, transparents, souvent délicatement colorés, faciles à mettre en forme ; ils sont souvent biocompatibles, biodégradables, recyclables. Dans le cycle des matériaux (Fig. 1), où le souci de l'environnement grandit, ces dernières propriétés sont importantes. Les matériaux moléculaires sont cependant fragiles et peuvent vieillir rapidement (sensibles à l'air, à la lumière …). Les matériaux moléculaires dans l’histoire Un matériau répond le plus souvent à un besoin, individuel ou social. Dans l'histoire, l'apparition de nouveaux matériaux correspond à l'évolution des besoins et à la capacité de l'homme à maîtriser le processus de fabrication du matériau[5] (Fig. 2). La protection contre les éléments est à l'origine de l'utilisation des matériaux moléculaires que sont les fibres naturelles végétales (lin, chanvre, coton à base de cellulose), ou animales (laine, soie à base de polypeptides), les fibres modifiant la matière première naturelle (soie artificielle, nitrate et acétate de cellulose …) ou plus tard les fibres purement synthétiques (nylons)[6]. L'évolution du naturel au synthétique est une constante dans l'histoire des matériaux moléculaires : la nature et les systèmes biologiques sont une source permanente d'exemples, d'inspiration et d'espoir. L'époque contemporaine marque l'accélération vers l'utilisation de matériaux complexes, notamment moléculaires. Le coût des matériaux moléculaires La figure 3 indique le coût des matériaux dans diverses branches industrielles, exprimé en euros par kilogramme. Les matériaux moléculaires interviennent peu dans les industries de la construction. Mais dès que le poids devient un critère de choix (emballage, transport), quand les autres exigences deviennent complexes (équipement sportif, santé …), ils prennent une place importante. Les multiples travaux fondamentaux et appliqués pour leur production industrielle contribuent à l'élévation du coût par unité. Par exemple, les lentilles de contact sont de petits chefs-d'œuvre de transparence, de légèreté, de précision optique et mécanique … Comment créer un matériau moléculaire ? L'élaboration d'un matériau est un long processus qui va de la matière première au produit[7]. Nous n'abordons ici que deux aspects fondamentaux : a) la liaison covalente sur laquelle repose l'existence de molécules stables (dihydrogène, H2 ou fluorure d'hydrogène, HF) et b) les interactions intermoléculaires sur lesquelles repose la construction des solides moléculaires. Nous n'abordons pas les problèmes très importants de mise en forme qui permettent de passer du système moléculaire doté des propriétés requises au matériau. L'existence d'une molécule repose sur l'interaction des atomes qui la constituent. Par combinaison et recouvrement des orbitales atomiques se forment des orbitales moléculaires qui décrivent les électrons dans la molécule[8]. Dans H2, les deux orbitales atomiques forment deux orbitales moléculaires ; les deux électrons se placent dans l'orbitale moléculaire de plus basse énergie (dite liante). L'orbitale la plus haute reste vide (antiliante). La molécule est plus stable que les atomes séparés. Les électrons de la liaison forment un doublet liant. Ils sont également partagés par les deux atomes. La liaison est dite covalente. Pour la casser, il faut fournir une grande quantité d'énergie (environ 450 kiloJoules par mole – ou kJ mol-1 – ; la mole est l'unité de quantité de matière. Au contraire, la molécule HF est formée par deux atomes différents : le fluor et l'hydrogène dont l'énergie des orbitales est différente. La liaison HF est encore plus forte que celle de H2 : 550 kJ mol-1. Mais le doublet de la liaison n'est plus partagé de manière égale entre H et F, il est « attiré » par l'atome de fluor, plus électronégatif ; il apparaît un moment dipolaire électrique dirigé du fluor vers l'hydrogène ; la liaison devient partiellement ionique. Six autres électrons du fluor forment trois doublets non liants. Le dipôle électrique est à l'origine d'interactions intermoléculaires, d'autant plus fortes que le fluor est très électronégatif et que l'hydrogène, petit, peut s'approcher très près du fluor voisin. Ces liaisons hydrogène existent dans l'eau liquide ou solide (glace) où le moment dipolaire électrique O-H est également important. Ces interactions expliquent la structure de la glace et déterminent les températures de changement d'état : pour l'eau, la température d'ébullition Téb est élevée, 100° Celsius, à cause des liaisons hydrogène. Pour le dihydrogène, apolaire, les interactions sont au contraire très faibles (interactions de van der Waals) et la température d'ébullition est très basse (-253° C !). Lorsque l'on place du chlorure de sodium NaCl (sel de cuisine) dans l'eau, le cristal est dissocié et les ions positifs sodium Na+ (cations) et négatifs chlorure Cl- (anions) se « solvatent » i.e. s'entourent de molécules d'eau grâce à des interactions ion-dipôle : ceci est à la base des propriétés de solvant de l'eau et de ses extraordinaires propriétés de transport de matière en biologie et en géologie : l'eau dissout les matières polaires ou ioniques (par interaction hydrophile) et n'interagit pas avec les molécules (ou les parties de molécules) non polaires (par interaction hydrophobe). C'est de la structure et de la nature de la liaison dans les molécules et des interactions entre les molécules que naissent les propriétés, la fonction et l'intérêt du matériau[9]. Molécules et matériaux moléculaires au quotidien Nous utilisons chaque jour des matériaux moléculaires[10] : fibres textiles (vêtements), savons (lessives), cristaux liquides (affichage : montres, ordinateurs, thermomètres) pour ne prendre que trois exemples. Polyamides, polyesters[11] Les fibres textiles artificielles sont des (macro)molécules, formés par l'addition ou la condensation multiple de petites molécules identiques : il se forme de longues chaînes[12]. Les propriétés du matériau reposent sur la structure des molécules de départ, sur les interactions entre les chaînes, puis sur la mise en forme. Ainsi les polyamides sont des polymères obtenus par la création de groupements amide ou peptidique, R-CO-NH-R', tandis que les polyesters comportent des groupements esters, R-CO-O-R'. La liaison hydrogène dans les polyamides renforce les interactions entre les chaînes, donc les propriétés mécaniques des polymères, qui sont excellentes (Fig. 4). Par contre, elle permet l'interaction avec des molécules d'eau : le nylon, qui est un polyamide, retiendra l'eau davantage que les polyesters (qui pourront donc utilisés comme vernis, au contact de l'eau …). D'autres interactions entre les chaînes - par exemple des interactions de van der Waals entre les noyaux aromatiques dans le Kevlar (Fig. 4), améliorent les propriétés mécaniques : le Kevlar est utilisé dans les tissus de protection anti-balles … Le besoin en matériaux complexes conduit à la préparation de composites. Ainsi, la nappe du pique-nique de la méridienne du 14 juillet 2000 assemble astucieusement de nombreux matériaux moléculaires : fibres de cellulose naturelle, liées par pulvérisation avec une émulsion aqueuse d'éthylène-acétate de vinyle ; le support est imperméable en polyéthylène pour la face arrière, contrecollée avec une émulsion aqueuse de styrène-butadiène. L'impression est sérigraphique avec des encres dont le liant est à base de copolymère butadiène. L'épaississant est acrylique. Les encres contiennent des résines acryliques et des pigments minéraux et organiques exempts de métaux lourds[13]. Le revêtement du train à grande vitesse « Méditerranée », conçu par un grand couturier, est également un composite de matériaux moléculaires, intelligemment choisis et artistiquement disposés[14]. Savons dans les lessives[15] Les savons sont obtenus à partir de corps gras, formés à partir de glycérol et d'acides carboxyliques à longues chaînes aliphatiques -(CH2)n-CH3 (Fig. 5A). La stéarine traitée à chaud par une base donne un savon, l'anion stéarate. L'extrémité carboxylate est chargée et hydrophile, l'extrémité aliphatique est hydrophobe. Il s'agit d'une molécule amphiphile ou surfactant. La graisse n'est pas soluble dans l'eau, une tache de graisse sur un tissu ne se dissout dans l'eau pure. On place alors un savon dans l'eau (Figure 5B, Schéma 1) : l'extrémité hydrophobe interagit avec la graisse hydrophobe (2) ; l'extrémité hydrophile est solvatée par l'eau (3). Quand le nombre d'interactions devient suffisant, la graisse est entraînée en tout ou partie (4). Le nettoyage est évidemment favorisé par une température et une agitation adaptées. Les surfactants donnent une nouvelle illustration du remplacement des produits naturels (savons issus de graisses animales ou végétales) par des dérivés de synthèse : les carboxylates ne sont pas très solubles en présence d'ions sodium ou potassium des eaux de lavage « dures » et sont remplacés par des composés plus solubles comme le benzenesulfonate à chaîne branchée, obtenu à partir d'un sous-produit de l'industrie pétrolière le méthylpropène, de benzène et d'acide sulfurique. C'est l'un des « détergents anioniques » des lessives. Les savons illustrent aussi le souci de l'environnement : les chaînes branchées ne sont pas biodégradables et encombrent les eaux, d'où l'apparition sur le marché d'autres détergents « non ioniques », non branchés, tout aussi solubles grâce à des groupements fonctionnels alcool et éther (Fig. 5C). Cristaux liquides[16] Les cristaux liquides sont des matériaux moléculaires qui représentent un nouvel état de la matière, l'état mésomorphe, dont l'organisation est intermédiaire entre l'ordre tridimensionnel du cristal et le désordre relatif du liquide (Fig. 6A). Ils ne présentent pas de température de changement d'état liquide-solide mais des températures correspondant à des organisations intermoléculaires variées : nématiques, smectiques, … (Fig. 6B). Ces propriétés exceptionnelles reposent sur l'auto-organisation d'assemblées de molécules anisotropes, i.e. qui n'ont pas les mêmes propriétés dans les trois directions de l'espace (molécules allongées). La direction dans laquelle les molécules s'orientent en moyenne est appelée directrice. Les interactions entre les molécules qui conduisent à l'état mésomorphe sont faibles de type Van der Waals[17]. Lorsque l'on applique un champ électrique, les molécules s'orientent de manière à minimiser l'énergie du système. Si on place un cristal liquide entre deux plaques, l'une qui polarise la lumière, l'autre qui l'analyse, on peut disposer les polariseurs de manière à ce qu'aucune lumière ne passe (Fig. 6C).
L'application d'un champ électrique oriente différemment les molécules et permet le passage de la lumière : le dispositif passe du noir à l'incolore (ou inversement), c'est le principe de l'affichage sur un écran. Des dispositifs électroniques de plus en plus élaborés (nématique « supertordu » et écrans « à matrice active » (où un transistor est associé à chaque domaine de cristal liquide) sont disponibles pour accélérer la vitesse d'affichage. Certains autres cristaux liquides (cholestériques chiraux) sont organisés de telle manière que la directrice tourne régulièrement autour d'un axe perpendiculaire à celle-ci. La directrice reprend la même orientation avec un pas p, dont dépend la réflexion de la lumière par le composé. Quand la température change, p varie (par contraction ou dilatation thermique) et le cristal liquide change de couleur : les thermomètres fondés sur ce principe sont très répandus. Élaboration de nouveaux matériaux fonctionnels L'un des problèmes importants posés aux laboratoires universitaires et industriels est la mise au point de nouveaux matériaux fonctionnels. Le concept de fonction est ici utilisé par opposition à celui de structure : le béton assure des propriétés structurales, le polymère des lentilles jetables assure de multiples fonctions : correction de la vue, transparence, perméabilité au dioxygène, hydrophilie). Les exemples ci-dessous montrent que la structure moléculaire contrôle les propriétés. Propriétés optiques La couleur des composés moléculaires est déterminée par la manière dont ils interagissent avec la lumière : ils peuvent la transmettre, la diffuser, la réfléchir de manière plus ou moins complexe en fonction de la structure moléculaire et de la microstructure du matériau[18]. Une lumière monochromatique de longueur d'onde l est constituée de photons d'énergie hn (h est la constante de Planck et n la fréquence de la lumière). La lumière visible correspond à des longueurs d'onde l comprises entre 400 et 800 nanomètres (nm). L'absorption de la lumière correspond à l'excitation d'un électron d'une orbitale moléculaire occupée vers une orbitale vacante. Seuls les photons dont l'énergie correspond exactement à la différence d'énergie entre les niveaux occupés et vacants sont absorbés. Par transmission, l'œil voit les longueurs d'onde non absorbées : si un matériau absorbe dans le rouge (600-800nm), il apparaît bleu par transmission. La structure des molécules peut être modifiée pour moduler les énergies des orbitales et donc la couleur. La garance, extraite de la racine de Rubia tinctorum, contient de l'alizarine qui peut être produite industriellement (Fig. 7). C'est la compréhension de la structure moléculaire des colorants (alizarine, indigo) qui a permis à l'industrie chimique allemande, à la fin du 19ème siècle d'asseoir sa suprématie dans ce domaine, en ruinant l'industrie d'extraction des colorants naturels[19]. Au-delà de la couleur, l'interaction de la lumière avec les matériaux a de multiples applications : l'absence d'absorption conduit à des matériaux transparents (polymères des lentilles oculaires[20] …) ; les crèmes de protection solaires ou les lunettes de soleil (verres photochromes[21]) protègent des rayons ultraviolets avec des molécules organiques conçues pour arrêter tout ou partie des rayons (écrans A, B …), comme l'ozone le fait dans la haute atmosphère. D'autres matériaux, asymétriques, traversés par une lumière de fréquence donnée, créent une lumière de fréquence double ou triple (matériaux pour l'optique non linéaire). D'autres systèmes émettent de la lumière par désexcitation d'une molécule excitée : ver luisant, diode luminescente, bâton lumineux chimiluminescent à base de luminol …). Le linge « plus blanc que blanc » existe bel et bien : il n'absorbe pas la lumière, il la diffuse et il en émet grâce à des additifs luminescents peroxygénés déposés sur les tissus par la lessive[22] ! Propriétés électriques La conductivité mesure la capacité d'un corps à conduire le courant. C''est l'une des grandeurs physiques qui varie le plus : plus de 20 ordres de grandeur entre les matériaux les plus isolants et les plus conducteurs. Les supraconducteurs ont même une conductivité qui tend vers l'infini. Les matériaux conducteurs métalliques sont généralement des métaux ou des oxydes. Les matériaux moléculaires sont pour la plupart isolants (s très faible), mais les chimistes ont réussi à transformer certains d'entre eux en conducteurs métalliques. L'idée est simple : en plaçant côte à côte un nombre infini d'atomes, on construit une bande d'énergie de largeur finie, formée d'une infinité de niveaux (ou d'orbitales) (Fig. 8, schémas 1-5). Quand la bande est vide et séparée en énergie des autres bandes (1), il y a ni électron, ni conduction. Quand la bande est pleine, chaque O.M. contient deux électrons qui ne peuvent se déplacer (isolant). Pour qu'il y ait conductivité, certains niveaux de la bande doivent être inoccupés (vacants ou partiellement vacants -3,4). Un semi-conducteur correspond au cas 5. La bande peut être construite par des orbitales atomiques du carbone dans un polymère comme le polyacétylène ou par l'empilement de molécules [tétrathiafulvalène (TTF) ou tétracyanoquinodiméthane (TCNQ)]. Le polyacétylène est isolant. Quand on l'oxyde, on enlève des électrons dans une bande qui devient partiellement occupée et le matériau devient conducteur. Il s'agit d'une discipline très active qui a valu le prix Nobel 2000 à trois chercheurs américains et japonais (A.J. Heeger, A.G. MacDiarmid, H. Shirakawa)[23]. Propriétés magnétiques[24] Ici encore les matériaux magnétiques traditionnels sont des métaux ou des oxydes (aimants domestiques, moteurs …). Les chimistes savent aujourd'hui construire des matériaux magnétiques moléculaires, à partir de complexes d'éléments de transition ou de radicaux organiques stables. À chaque électron est associé un spin S = 1/2 et un moment magnétique élémentaire. Les éléments de transition présentent 5 orbitales d où peuvent se placer 10 électrons. L'environnement chimique du métal constitué de molécules appelées ligands, permet de contrôler l'énergie des orbitales et la manière de les remplir avec des électrons : dans un complexe octaédrique ML6, par exemple, l'élément de transition est entouré de six molécules. La symétrie permet de prévoir que les cinq orbitales d dans le complexe sont séparées en deux familles : trois orbitales appelées t2g, deux orbitales appelées eg, séparées par une énergie ∆oct, variable avec les ligands. La théorie qui décrit le phénomène porte le joli nom de « champ cristallin » ou « champ des ligands ». Les électrons ont alors le choix : occuper le maximum d'orbitales (ce qui, pour les orbitales eg, coûte l'énergie ∆, ou se mettre en paire dans une même orbitale (ce qui coûte une énergie d'appariement P). Prenons l'exemple de 5 électrons (Fig. 9) : a) quand ∆ < P, le champ est faible et le spin est fort (S = somme des cinq spins parallèles = 5/2) ; b) quand ∆ > P, les électrons se regroupent par paires dans les orbitales t2g ; le champ est fort et le spin est faible (S = 1/2). Dans la situation intermédiaire où ∆ est à peu près égal à P, le complexe peut être de spin fort ou faible, en fonction des contraintes appliquées (température kT, pression, lumière). C'est le phénomène de transition de spin qui se manifeste par un changement de propriétés magnétiques et de couleur (car ∆ change lors de la transition). Quand la transition se manifeste à température ambiante et présente le phénomène dit d'hystérésis (la température de transition « spin fort-spin faible » (blanc-rouge, par exemple) est différente de celle de la transition inverse, spin faible-spin fort. Il existe un domaine de température où le système peut être spin fort (blanc, quand il vient des hautes températures), ou spin faible (rouge quand il vient des basses températures). C'est un système bistable, « à mémoire » en quelque sorte, qui « se souvient » de son histoire (thermique), utilisable pour l'affichage[25]. Au-delà de cet exemple, l'application de règles simples permet de construire des matériaux magnétiques. Quand deux électrons occupent deux orbitales sur deux atomes voisins A et B, trois situations existent : a) quand les orbitales se recouvrent, comme dans le cas de la molécule de dihydrogène, on obtient un couplage antiferromagnétique entre les spins (les spins sont d'orientation opposée, antiparallèle, le spin total ST = SA - SB = 0) ; b) quand les orbitales ne se recouvrent pas (elles sont orthogonales), les spins s'orientent parallèlement et le couplage est ferromagnétique S = SA + SB = 1) ; c) une situation amusante naît quand les orbitales se recouvrent et que le nombre d'électrons est différent sur A et B, alors ST = SA - SB ≠ 0, le spin résultant est non nul. Paradoxalement et dialectiquement, l'antiferromagnétisme engendre son contraire, un magnétisme résultant. Cette idée a valu le prix Nobel à Louis Néel. En étendant de proche en proche l'interaction dans les trois directions de l'espace, jusqu'à l'infini, à une certaine température critique, TCurie, un ordre magnétique à longue distance apparaît où tous les grands spins sont alignés dans un sens et tous les petits spins sont alignés en sens inverse. C'est ainsi qu'en utilisant la stratégie des orbitales orthogonales [ i.e. avec du chromicyanure de potassium (3 orbitales t2g) combiné avec du nickel(II) (2 orbitales eg)], Véronique Gadet, à obtenu un aimant ferromagnétique avec une température de Curie, 90 Kelvins (K), supérieure à la température de liquéfaction de l'azote liquide, 77K[26]. En utilisant la stratégie du ferrimagnétisme, Sylvie Ferlay a obtenu un aimant qui s'ordonne un peu au-dessus de la température ambiante (42°C ou 315K)[27]. Deux points méritent d'être soulignés dans ce résultat : le caractère rationnel de l'approche et la possibilité qu'il offre désormais de passer aux applications pratiques des aimants à précurseurs moléculaires. Un exemple est donné sur la figure 10. L'aimant à précurseur moléculaire est dans une ampoule dans un gaz inerte (argon) car exposé à l'air, il perd ses propriétés. Il est suspendu à un point fixe, comme un pendule. Quand il est froid, il est attiré par un aimant permanent (1). En ce point, il est chauffé par un faisceau lumineux (lampe, soleil). Quand sa température dépasse la température d'ordre, il n'est plus attiré par l'aimant et repart vers la verticale (2). Hors du faisceau, l'air ambiant le refroidit (3) et il est à nouveau attiré : d'où un mouvement oscillant où l'énergie lumineuse se transforme en énergie mécanique, en utilisant deux sources gratuites d'énergie : l'énergie solaire et l'air ambiant. Des millions de cycles ont ainsi été effectués sans fatigue du système. La recherche de nouveaux matériaux magnétiques moléculaires est très active, au niveau national et international. Certains matériaux sont capables de présenter plusieurs fonctions (magnétisme modulé par la lumière pour l'enregistrement photomagnétique)[28], aimants optiquement actifs (qui font tourner à volonté la lumière polarisée soit à droite soit à gauche)[29] … Matériaux pour l’électronique moléculaire[30] L'un des développements le plus excitant est celui des matériaux pour l’électronique moléculaire. Sous ce terme se cachent diverses interprétations : matériaux moléculaires pour l'électronique (dont les cristaux liquides ou les polymères sont des exemples) ou l'électronique à l'échelle de la molécule. Tous les exemples que nous avons cités jusqu'à présent faisaient intervenir des ensembles macroscopiques de molécules, i.e. des moles de molécules. La recherche se développe pour concevoir et réaliser des molécules se prêtant à des expériences d'électronique sur une seule entité moléculaire avec notamment des techniques de microscopie à champ proche (où la molécule joue le rôle de conducteur, de diode, de photodiode …). Par exemple le mouvement de miniaturisation de l'électronique (électronique portable, enregistrement de quantités de plus en plus grande d'information sur des surfaces de plus en plus petites, calcul quantique …) peut aboutir à la mise au point de dispositifs permettant de stocker l'information à l'échelle ultime, celle d'une seule molécule[31]… Le présent se conjugue déjà au futur. Conclusion Dans un monde qui va vers plus de complexité, le développement des matériaux moléculaires n'en est qu'à son début. Les possibilités offertes par la flexibilité de la chimie moléculaire et supramoléculaire qui ont ouvert ce cycle de leçons[32], la chimie des métaux de transition et la chimie du carbone, sont pour l'essentiel inexplorées mais immenses[33]. La compréhension fondamentale et pluridisciplinaire des propriétés de la matière, la capacité du chimiste à maîtriser la synthèse pour obtenir les propriétés souhaitées peuvent permettre de répondre de mieux en mieux aux nouveaux besoins de l'homme et de la société. À eux d'en faire bon usage. Remerciements Ce travail sur les matériaux moléculaires a été alimenté par de nombreuses discussions dans mon équipe, dans mon laboratoire et dans les nombreux établissements que j'ai fréquentés et financé par le Ministère de l'Education Nationale, le C.N.R.S., les contrats européens M3D et Molnanomag, l'ESF (Molecular Magnets). Les expériences ont été préparées par F. Villain. Les matériaux présentés ont été aimablement prêtés par de nombreux fournisseurs auxquels je suis reconnaissant. Je dédie cette contribution à la mémoire de deux scientifiques français dont j'ai beaucoup appris, Olivier Kahn décédé en décembre 1999 et Louis Néel, prix Nobel de Physique 1970, dont j'apprends la disparition.

[1] Elsa Triolet, L’âge de nylon, Œuvres romanesques croisées d'Elsa Triolet et d'Aragon, Robert Laffont, Paris, 1959. [2] Jacques Simon, Patrick Bernier, Michel Armand, Jacques Prost, Patrick Hémery, Olivier Kahn, Denis Jérôme, Les matériaux moléculaires, p. 401-404, La Science au présent, Tome II, Encyclopædia Universalis, 1992. P. Bassoul, J. Simon, Molecular materials, Wiley, New York, 2000. [3] J.P. Mercier, G. Zambelli, W. Kurz, Introduction à la science des matériaux, Presses polytechniques romandes, Lausanne, 1999. [4] R.E. Hummel, Understanding Materials Science, Springer, Berlin, 1998. [5] André Leroi-Gourhan, L'homme et la matière, Albin Michel, Paris, 1971. B. Bensaude-Vincent, I. Stengers, Histoire de la chimie, La découverte, Paris, 1993. [6] Encyclopædia Universalis, Paris, 1990, article Textiles (Fibres). Pour la Science, N° spécial, Fibres textiles et tissus biologiques, Décembre 1999. [7] Encyclopædia Universalis, Paris, 1990, article Matériaux. [8] Encyclopædia Universalis, Paris, 1990, articles Liaisons chimiques et Molécule. J.P.Malrieu, ce volume. L. Salem, Molécule, la merveilleuse, Interéditions, Paris, 1979. Y. Jean, F. Volatron, Atomistique et liaison chimique, Ediscience, Paris, 1995. T. A. Nguyen, Introduction à la chimie moléculaire, École Polytechnique, Ellipses, 1994. [9] P.W. Atkins, Molecules, Freeman, New York, 1987 et traduction française. [10] Ben Selinger, Chemistry in the Market Place, Harcourt Brace, Sidney, 1998. [11] Jean Bost, Matières plastiques (Tomes I et II), Technique et Documentation, Paris, 1985. Groupement Français des Polymères, Les polymères, Paris. [12] Encyclopædia Universalis, Paris, 1990, articles Macromolécules, Polymères et Textiles (Fibres). [13] Communication de la société Fort Williams (Lotus), Gien. [14] Communication du service commercial de la SNCF, Paris. [15] Encyclopædia Universalis, Paris, 1990, article Corps gras. Ben Selinger, Chemistry in the Market Place, Harcourt Brace, Sidney, 1998. [16] Encyclopædia Universalis, Paris, 1990, article Cristaux liquides et Mésomorphe (État). [17] Encyclopædia Universalis, Paris, 1990, article Van der Waals. [18] Encyclopædia Universalis, Paris, 1990, article Couleur. [19] Pour la Science, Dossier « La couleur », Avril 2000, notamment G. Bram, N. T. Anh, L'avènement des colorants synthétiques p. 52. [20] Communications de la société Ciba, Paris. [21] Communications de la Société Essilor, Paris. [22] Ben Selinger, Chemistry in the Market Place, Harcourt Brace, Sidney, 1998. [23] L'actualité Chimique, Société Française de Chimie, Novembre 2000, p. 64. [24] O. Kahn, Molecular Magnetism, VCH, New York, 1993. M. Verdaguer et al., Images de la Physique, CNRS, Paris, 2000. [25] O. Kahn, Magnétisme moléculaire, La Recherche, Paris, 1994. [26] V. Gadet et al., J. Am. Chem. Soc. 1992, 114, 9213-9214. [27] S. Ferlay et al. Nature, 378, 701, 1995. [28] M. Verdaguer, Science, 272, 698, 1996. A. Bleuzen, J. Am. Chem. Soc., 2000, 122, 6648. C. Cartier ibid. 6653. d) H. Hashimoto et al. ibid 704. [29] M. Gruselle, C. Train travail en cours. [30] M.C. Petty, M.R. Bryce, D. Bloor, Molecular Electronics, Edward Arnold, Londres, 1995. J. Jortner, M. Ratner, Molecular Electronics, I.U.P.A.C., Blackwell Science, 1997. [31] D. Gatteschi, R. Sessoli et al. Nature 1993, 365, 141. V. Marvaud, travail en cours. [32] J.M. Lehn, Chimie supramoléculaire, VCH, New York, 1997. T.A. Nguyen, J.M. Lehn, ce volume. [33] Dossier : 1999, Année internationale de la chimie, Pour la Science, Décembre 1999, p. 69-84 : J.M. Lehn, J.P. Launay, T. Ebbesen, G. Ourisson … La Science au présent, Encyclopædia Universalis, 1998 ; a) M.W. Hosseini, b) J.P. Sauvage, ; c) P. Bernier.

 

  VIDEO       CANAL  U         LIEN

 
 
 
 

LES MATÉRIAUX MOLÉCULAIRES

 

 

 

 

 

 

 

LES MATÉRIAUX MOLÉCULAIRES

L' histoire de l'humanité est scandée par la nature des matériaux que l'homme est capable d'élaborer et d'utiliser pour répondre à ses besoins. Notre époque est marquée par une explosion de la création de nouveaux matériaux, de plus en plus conçus pour répondre à un besoin très précis. Dans ce contexte, les matériaux réalisés à partir de molécules peuvent faire valoir de nombreux avantages : ils sont le plus souvent de faible densité, transparents ou colorés à la demande, solubles, biocompatibles, faciles à mettre en forme, etc. La flexibilité de la chimie moléculaire permet de produire pratiquement " à la carte " de nouvelles molécules et de nouveaux édifices moléculaires en variant de manière de plus en plus subtile structures, structures électroniques et propriétés. Les synthèses sont guidées par les besoins en nouveaux matériaux de structure ou en matériaux fonctionnels. Notre vie quotidienne est ainsi entourée de matériaux moléculaires familiers qu'ils soient d'origine naturelle ou industrielle, créations de l'homme. L'exposé les identifie, illustre et commente quelques unes de leurs propriétés et leurs multiples domaines d'application. Dans le même temps, une recherche pluridisciplinaire se poursuit pour obtenir des matériaux présentant des propriétés inédites, voire des propriétés multiples au niveau macroscopique (grands ensembles de molécules) ou au niveau d'une seule molécule (électronique moléculaire, machines moléculaires…). Quelques aspects de ces recherches sont présentés, en mettant en évidence les principes fondamentaux sur lesquels repose la synthèse des molécules et des édifices moléculaires présentant des propriétés données, les techniques récentes qui permettent un progrès plus rapide en matière de matériaux moléculaires, les contraintes qui s'exercent sur la production de ces matériaux et les perspectives qui s'ouvrent dans un domaine où la riche complexité des matériaux biologiques constitue une matière première et un exemple, une source de réflexion et d'espoir permanents.

Texte de la 240e conférence de l’Université de tous les savoirs donnée le 27 août 2000.Les matériaux moléculaires ou : de la molécule au matériau …par Michel Verdaguer Il est trivial de dire que la notion de matériau a scandé l’histoire de l’humanité : les « âges » qui structurent l’histoire de l’homme portent le nom de matériaux : âge de la pierre, âge du bronze, âge du fer, âge du silicium ou du nylon. Un seul de ces matériaux est un matériau (macro)moléculaire, c’est le nylon, mais c’est le plus récent, le plus complexe, le plus seyant[1]. Qu'est-ce qu'un matériau moléculaire ? Avant toute chose, il est souhaitable de définir ce que l’on entend par matériau moléculaire. Un matériau moléculaire est un matériau constitué de molécules[2]. Une molécule est un ensemble d’atomes reliés entre eux par des liaisons chimiques covalentes. Un matériau est une substance utile qui, convenablement mise en forme, est insérée dans un dispositif pour y remplir une fonction grâce à ses propriétés. C'est souvent un solide. Les matériaux moléculaires sont d'une grande diversité, de la nappe de l’incroyable pique-nique du 14 juillet 2000 (composite de polymères) aux dispositifs d’affichage des écrans de micro-ordinateurs (cristaux liquides). Les matériaux moléculaires parmi les autres matériaux Les grandes classes de matériaux utilisés par l'homme sont les métaux, les céramiques, les polymères[3]. Cette classification, pour une part arbitraire, ne comporte pas de matériau moléculaire au sens strict. Mais les polymères sont des molécules géantes (macromolécules). Chaque type de matériau a des propriétés caractéristiques (mécaniques, physiques, chimiques), correspondant à la structure et au type de liaison concerné : les métaux (liaison métallique) sont des assemblages d'atomes. Ils sont conducteurs, durs, à température de fusion élevée, malléables, ductiles, denses, réfléchissants et opaques. Les céramiques (liaison ionique) sont des assemblages d'ions isolants, réfractaires, denses, résistants mécaniquement et thermiquement mais cassants et fragiles. Les polymères (liaison covalente) sont légers, faciles à mettre en forme, isolants, peu rigides, souvent peu stables à la température. Quand un besoin n'est pas couvert par les grandes classes de matériaux, on fait appel à des composites, mélange complexe de matériaux ou on en crée de nouveaux. Il existe une véritable science des matériaux qui les étudie, les améliore et les crée[4]. Parmi les matériaux nouveaux, figurent précisément les matériaux moléculaires. Contrairement aux céramiques et aux métaux, obtenus à très haute température (donc coûteux en énergie), les matériaux moléculaires et les polymères sont obtenus dans des conditions douces de température et de pression. Ils sont légers, transparents, souvent délicatement colorés, faciles à mettre en forme ; ils sont souvent biocompatibles, biodégradables, recyclables. Dans le cycle des matériaux (Fig. 1), où le souci de l'environnement grandit, ces dernières propriétés sont importantes. Les matériaux moléculaires sont cependant fragiles et peuvent vieillir rapidement (sensibles à l'air, à la lumière …). Les matériaux moléculaires dans l’histoire Un matériau répond le plus souvent à un besoin, individuel ou social. Dans l'histoire, l'apparition de nouveaux matériaux correspond à l'évolution des besoins et à la capacité de l'homme à maîtriser le processus de fabrication du matériau[5] (Fig. 2). La protection contre les éléments est à l'origine de l'utilisation des matériaux moléculaires que sont les fibres naturelles végétales (lin, chanvre, coton à base de cellulose), ou animales (laine, soie à base de polypeptides), les fibres modifiant la matière première naturelle (soie artificielle, nitrate et acétate de cellulose …) ou plus tard les fibres purement synthétiques (nylons)[6]. L'évolution du naturel au synthétique est une constante dans l'histoire des matériaux moléculaires : la nature et les systèmes biologiques sont une source permanente d'exemples, d'inspiration et d'espoir. L'époque contemporaine marque l'accélération vers l'utilisation de matériaux complexes, notamment moléculaires. Le coût des matériaux moléculaires La figure 3 indique le coût des matériaux dans diverses branches industrielles, exprimé en euros par kilogramme. Les matériaux moléculaires interviennent peu dans les industries de la construction. Mais dès que le poids devient un critère de choix (emballage, transport), quand les autres exigences deviennent complexes (équipement sportif, santé …), ils prennent une place importante. Les multiples travaux fondamentaux et appliqués pour leur production industrielle contribuent à l'élévation du coût par unité. Par exemple, les lentilles de contact sont de petits chefs-d'œuvre de transparence, de légèreté, de précision optique et mécanique … Comment créer un matériau moléculaire ? L'élaboration d'un matériau est un long processus qui va de la matière première au produit[7]. Nous n'abordons ici que deux aspects fondamentaux : a) la liaison covalente sur laquelle repose l'existence de molécules stables (dihydrogène, H2 ou fluorure d'hydrogène, HF) et b) les interactions intermoléculaires sur lesquelles repose la construction des solides moléculaires. Nous n'abordons pas les problèmes très importants de mise en forme qui permettent de passer du système moléculaire doté des propriétés requises au matériau. L'existence d'une molécule repose sur l'interaction des atomes qui la constituent. Par combinaison et recouvrement des orbitales atomiques se forment des orbitales moléculaires qui décrivent les électrons dans la molécule[8]. Dans H2, les deux orbitales atomiques forment deux orbitales moléculaires ; les deux électrons se placent dans l'orbitale moléculaire de plus basse énergie (dite liante). L'orbitale la plus haute reste vide (antiliante). La molécule est plus stable que les atomes séparés. Les électrons de la liaison forment un doublet liant. Ils sont également partagés par les deux atomes. La liaison est dite covalente. Pour la casser, il faut fournir une grande quantité d'énergie (environ 450 kiloJoules par mole – ou kJ mol-1 – ; la mole est l'unité de quantité de matière. Au contraire, la molécule HF est formée par deux atomes différents : le fluor et l'hydrogène dont l'énergie des orbitales est différente. La liaison HF est encore plus forte que celle de H2 : 550 kJ mol-1. Mais le doublet de la liaison n'est plus partagé de manière égale entre H et F, il est « attiré » par l'atome de fluor, plus électronégatif ; il apparaît un moment dipolaire électrique dirigé du fluor vers l'hydrogène ; la liaison devient partiellement ionique. Six autres électrons du fluor forment trois doublets non liants. Le dipôle électrique est à l'origine d'interactions intermoléculaires, d'autant plus fortes que le fluor est très électronégatif et que l'hydrogène, petit, peut s'approcher très près du fluor voisin. Ces liaisons hydrogène existent dans l'eau liquide ou solide (glace) où le moment dipolaire électrique O-H est également important. Ces interactions expliquent la structure de la glace et déterminent les températures de changement d'état : pour l'eau, la température d'ébullition Téb est élevée, 100° Celsius, à cause des liaisons hydrogène. Pour le dihydrogène, apolaire, les interactions sont au contraire très faibles (interactions de van der Waals) et la température d'ébullition est très basse (-253° C !). Lorsque l'on place du chlorure de sodium NaCl (sel de cuisine) dans l'eau, le cristal est dissocié et les ions positifs sodium Na+ (cations) et négatifs chlorure Cl- (anions) se « solvatent » i.e. s'entourent de molécules d'eau grâce à des interactions ion-dipôle : ceci est à la base des propriétés de solvant de l'eau et de ses extraordinaires propriétés de transport de matière en biologie et en géologie : l'eau dissout les matières polaires ou ioniques (par interaction hydrophile) et n'interagit pas avec les molécules (ou les parties de molécules) non polaires (par interaction hydrophobe). C'est de la structure et de la nature de la liaison dans les molécules et des interactions entre les molécules que naissent les propriétés, la fonction et l'intérêt du matériau[9]. Molécules et matériaux moléculaires au quotidien Nous utilisons chaque jour des matériaux moléculaires[10] : fibres textiles (vêtements), savons (lessives), cristaux liquides (affichage : montres, ordinateurs, thermomètres) pour ne prendre que trois exemples. Polyamides, polyesters[11] Les fibres textiles artificielles sont des (macro)molécules, formés par l'addition ou la condensation multiple de petites molécules identiques : il se forme de longues chaînes[12]. Les propriétés du matériau reposent sur la structure des molécules de départ, sur les interactions entre les chaînes, puis sur la mise en forme. Ainsi les polyamides sont des polymères obtenus par la création de groupements amide ou peptidique, R-CO-NH-R', tandis que les polyesters comportent des groupements esters, R-CO-O-R'. La liaison hydrogène dans les polyamides renforce les interactions entre les chaînes, donc les propriétés mécaniques des polymères, qui sont excellentes (Fig. 4). Par contre, elle permet l'interaction avec des molécules d'eau : le nylon, qui est un polyamide, retiendra l'eau davantage que les polyesters (qui pourront donc utilisés comme vernis, au contact de l'eau …). D'autres interactions entre les chaînes - par exemple des interactions de van der Waals entre les noyaux aromatiques dans le Kevlar (Fig. 4), améliorent les propriétés mécaniques : le Kevlar est utilisé dans les tissus de protection anti-balles … Le besoin en matériaux complexes conduit à la préparation de composites. Ainsi, la nappe du pique-nique de la méridienne du 14 juillet 2000 assemble astucieusement de nombreux matériaux moléculaires : fibres de cellulose naturelle, liées par pulvérisation avec une émulsion aqueuse d'éthylène-acétate de vinyle ; le support est imperméable en polyéthylène pour la face arrière, contrecollée avec une émulsion aqueuse de styrène-butadiène. L'impression est sérigraphique avec des encres dont le liant est à base de copolymère butadiène. L'épaississant est acrylique. Les encres contiennent des résines acryliques et des pigments minéraux et organiques exempts de métaux lourds[13]. Le revêtement du train à grande vitesse « Méditerranée », conçu par un grand couturier, est également un composite de matériaux moléculaires, intelligemment choisis et artistiquement disposés[14]. Savons dans les lessives[15] Les savons sont obtenus à partir de corps gras, formés à partir de glycérol et d'acides carboxyliques à longues chaînes aliphatiques -(CH2)n-CH3 (Fig. 5A). La stéarine traitée à chaud par une base donne un savon, l'anion stéarate. L'extrémité carboxylate est chargée et hydrophile, l'extrémité aliphatique est hydrophobe. Il s'agit d'une molécule amphiphile ou surfactant. La graisse n'est pas soluble dans l'eau, une tache de graisse sur un tissu ne se dissout dans l'eau pure. On place alors un savon dans l'eau (Figure 5B, Schéma 1) : l'extrémité hydrophobe interagit avec la graisse hydrophobe (2) ; l'extrémité hydrophile est solvatée par l'eau (3). Quand le nombre d'interactions devient suffisant, la graisse est entraînée en tout ou partie (4). Le nettoyage est évidemment favorisé par une température et une agitation adaptées. Les surfactants donnent une nouvelle illustration du remplacement des produits naturels (savons issus de graisses animales ou végétales) par des dérivés de synthèse : les carboxylates ne sont pas très solubles en présence d'ions sodium ou potassium des eaux de lavage « dures » et sont remplacés par des composés plus solubles comme le benzenesulfonate à chaîne branchée, obtenu à partir d'un sous-produit de l'industrie pétrolière le méthylpropène, de benzène et d'acide sulfurique. C'est l'un des « détergents anioniques » des lessives. Les savons illustrent aussi le souci de l'environnement : les chaînes branchées ne sont pas biodégradables et encombrent les eaux, d'où l'apparition sur le marché d'autres détergents « non ioniques », non branchés, tout aussi solubles grâce à des groupements fonctionnels alcool et éther (Fig. 5C). Cristaux liquides[16] Les cristaux liquides sont des matériaux moléculaires qui représentent un nouvel état de la matière, l'état mésomorphe, dont l'organisation est intermédiaire entre l'ordre tridimensionnel du cristal et le désordre relatif du liquide (Fig. 6A). Ils ne présentent pas de température de changement d'état liquide-solide mais des températures correspondant à des organisations intermoléculaires variées : nématiques, smectiques, … (Fig. 6B). Ces propriétés exceptionnelles reposent sur l'auto-organisation d'assemblées de molécules anisotropes, i.e. qui n'ont pas les mêmes propriétés dans les trois directions de l'espace (molécules allongées). La direction dans laquelle les molécules s'orientent en moyenne est appelée directrice. Les interactions entre les molécules qui conduisent à l'état mésomorphe sont faibles de type Van der Waals[17]. Lorsque l'on applique un champ électrique, les molécules s'orientent de manière à minimiser l'énergie du système. Si on place un cristal liquide entre deux plaques, l'une qui polarise la lumière, l'autre qui l'analyse, on peut disposer les polariseurs de manière à ce qu'aucune lumière ne passe (Fig. 6C). L'application d'un champ électrique oriente différemment les molécules et permet le passage de la lumière : le dispositif passe du noir à l'incolore (ou inversement), c'est le principe de l'affichage sur un écran. Des dispositifs électroniques de plus en plus élaborés (nématique « supertordu » et écrans « à matrice active » (où un transistor est associé à chaque domaine de cristal liquide) sont disponibles pour accélérer la vitesse d'affichage. Certains autres cristaux liquides (cholestériques chiraux) sont organisés de telle manière que la directrice tourne régulièrement autour d'un axe perpendiculaire à celle-ci. La directrice reprend la même orientation avec un pas p, dont dépend la réflexion de la lumière par le composé. Quand la température change, p varie (par contraction ou dilatation thermique) et le cristal liquide change de couleur : les thermomètres fondés sur ce principe sont très répandus. Élaboration de nouveaux matériaux fonctionnels L'un des problèmes importants posés aux laboratoires universitaires et industriels est la mise au point de nouveaux matériaux fonctionnels. Le concept de fonction est ici utilisé par opposition à celui de structure : le béton assure des propriétés structurales, le polymère des lentilles jetables assure de multiples fonctions : correction de la vue, transparence, perméabilité au dioxygène, hydrophilie). Les exemples ci-dessous montrent que la structure moléculaire contrôle les propriétés. Propriétés optiques La couleur des composés moléculaires est déterminée par la manière dont ils interagissent avec la lumière : ils peuvent la transmettre, la diffuser, la réfléchir de manière plus ou moins complexe en fonction de la structure moléculaire et de la microstructure du matériau[18]. Une lumière monochromatique de longueur d'onde l est constituée de photons d'énergie hn (h est la constante de Planck et n la fréquence de la lumière). La lumière visible correspond à des longueurs d'onde l comprises entre 400 et 800 nanomètres (nm). L'absorption de la lumière correspond à l'excitation d'un électron d'une orbitale moléculaire occupée vers une orbitale vacante. Seuls les photons dont l'énergie correspond exactement à la différence d'énergie entre les niveaux occupés et vacants sont absorbés. Par transmission, l'œil voit les longueurs d'onde non absorbées : si un matériau absorbe dans le rouge (600-800nm), il apparaît bleu par transmission. La structure des molécules peut être modifiée pour moduler les énergies des orbitales et donc la couleur. La garance, extraite de la racine de Rubia tinctorum, contient de l'alizarine qui peut être produite industriellement (Fig. 7). C'est la compréhension de la structure moléculaire des colorants (alizarine, indigo) qui a permis à l'industrie chimique allemande, à la fin du 19ème siècle d'asseoir sa suprématie dans ce domaine, en ruinant l'industrie d'extraction des colorants naturels[19]. Au-delà de la couleur, l'interaction de la lumière avec les matériaux a de multiples applications : l'absence d'absorption conduit à des matériaux transparents (polymères des lentilles oculaires[20] …) ; les crèmes de protection solaires ou les lunettes de soleil (verres photochromes[21]) protègent des rayons ultraviolets avec des molécules organiques conçues pour arrêter tout ou partie des rayons (écrans A, B …), comme l'ozone le fait dans la haute atmosphère. D'autres matériaux, asymétriques, traversés par une lumière de fréquence donnée, créent une lumière de fréquence double ou triple (matériaux pour l'optique non linéaire). D'autres systèmes émettent de la lumière par désexcitation d'une molécule excitée : ver luisant, diode luminescente, bâton lumineux chimiluminescent à base de luminol …). Le linge « plus blanc que blanc » existe bel et bien : il n'absorbe pas la lumière, il la diffuse et il en émet grâce à des additifs luminescents peroxygénés déposés sur les tissus par la lessive[22] ! Propriétés électriques La conductivité mesure la capacité d'un corps à conduire le courant. C''est l'une des grandeurs physiques qui varie le plus : plus de 20 ordres de grandeur entre les matériaux les plus isolants et les plus conducteurs. Les supraconducteurs ont même une conductivité qui tend vers l'infini. Les matériaux conducteurs métalliques sont généralement des métaux ou des oxydes. Les matériaux moléculaires sont pour la plupart isolants (s très faible), mais les chimistes ont réussi à transformer certains d'entre eux en conducteurs métalliques. L'idée est simple : en plaçant côte à côte un nombre infini d'atomes, on construit une bande d'énergie de largeur finie, formée d'une infinité de niveaux (ou d'orbitales) (Fig. 8, schémas 1-5). Quand la bande est vide et séparée en énergie des autres bandes (1), il y a ni électron, ni conduction. Quand la bande est pleine, chaque O.M. contient deux électrons qui ne peuvent se déplacer (isolant). Pour qu'il y ait conductivité, certains niveaux de la bande doivent être inoccupés (vacants ou partiellement vacants -3,4). Un semi-conducteur correspond au cas 5. La bande peut être construite par des orbitales atomiques du carbone dans un polymère comme le polyacétylène ou par l'empilement de molécules [tétrathiafulvalène (TTF) ou tétracyanoquinodiméthane (TCNQ)]. Le polyacétylène est isolant. Quand on l'oxyde, on enlève des électrons dans une bande qui devient partiellement occupée et le matériau devient conducteur. Il s'agit d'une discipline très active qui a valu le prix Nobel 2000 à trois chercheurs américains et japonais (A.J. Heeger, A.G. MacDiarmid, H. Shirakawa)[23]. Propriétés magnétiques[24] Ici encore les matériaux magnétiques traditionnels sont des métaux ou des oxydes (aimants domestiques, moteurs …). Les chimistes savent aujourd'hui construire des matériaux magnétiques moléculaires, à partir de complexes d'éléments de transition ou de radicaux organiques stables. À chaque électron est associé un spin S = 1/2 et un moment magnétique élémentaire. Les éléments de transition présentent 5 orbitales d où peuvent se placer 10 électrons. L'environnement chimique du métal constitué de molécules appelées ligands, permet de contrôler l'énergie des orbitales et la manière de les remplir avec des électrons : dans un complexe octaédrique ML6, par exemple, l'élément de transition est entouré de six molécules. La symétrie permet de prévoir que les cinq orbitales d dans le complexe sont séparées en deux familles : trois orbitales appelées t2g, deux orbitales appelées eg, séparées par une énergie ∆oct, variable avec les ligands. La théorie qui décrit le phénomène porte le joli nom de « champ cristallin » ou « champ des ligands ». Les électrons ont alors le choix : occuper le maximum d'orbitales (ce qui, pour les orbitales eg, coûte l'énergie ∆, ou se mettre en paire dans une même orbitale (ce qui coûte une énergie d'appariement P). Prenons l'exemple de 5 électrons (Fig. 9) : a) quand ∆ < P, le champ est faible et le spin est fort (S = somme des cinq spins parallèles = 5/2) ; b) quand ∆ > P, les électrons se regroupent par paires dans les orbitales t2g ; le champ est fort et le spin est faible (S = 1/2). Dans la situation intermédiaire où ∆ est à peu près égal à P, le complexe peut être de spin fort ou faible, en fonction des contraintes appliquées (température kT, pression, lumière). C'est le phénomène de transition de spin qui se manifeste par un changement de propriétés magnétiques et de couleur (car ∆ change lors de la transition). Quand la transition se manifeste à température ambiante et présente le phénomène dit d'hystérésis (la température de transition « spin fort-spin faible » (blanc-rouge, par exemple) est différente de celle de la transition inverse, spin faible-spin fort. Il existe un domaine de température où le système peut être spin fort (blanc, quand il vient des hautes températures), ou spin faible (rouge quand il vient des basses températures). C'est un système bistable, « à mémoire » en quelque sorte, qui « se souvient » de son histoire (thermique), utilisable pour l'affichage[25]. Au-delà de cet exemple, l'application de règles simples permet de construire des matériaux magnétiques. Quand deux électrons occupent deux orbitales sur deux atomes voisins A et B, trois situations existent : a) quand les orbitales se recouvrent, comme dans le cas de la molécule de dihydrogène, on obtient un couplage antiferromagnétique entre les spins (les spins sont d'orientation opposée, antiparallèle, le spin total ST = SA - SB = 0) ; b) quand les orbitales ne se recouvrent pas (elles sont orthogonales), les spins s'orientent parallèlement et le couplage est ferromagnétique S = SA + SB = 1) ; c) une situation amusante naît quand les orbitales se recouvrent et que le nombre d'électrons est différent sur A et B, alors ST = SA - SB ≠ 0, le spin résultant est non nul. Paradoxalement et dialectiquement, l'antiferromagnétisme engendre son contraire, un magnétisme résultant. Cette idée a valu le prix Nobel à Louis Néel. En étendant de proche en proche l'interaction dans les trois directions de l'espace, jusqu'à l'infini, à une certaine température critique, TCurie, un ordre magnétique à longue distance apparaît où tous les grands spins sont alignés dans un sens et tous les petits spins sont alignés en sens inverse. C'est ainsi qu'en utilisant la stratégie des orbitales orthogonales [ i.e. avec du chromicyanure de potassium (3 orbitales t2g) combiné avec du nickel(II) (2 orbitales eg)], Véronique Gadet, à obtenu un aimant ferromagnétique avec une température de Curie, 90 Kelvins (K), supérieure à la température de liquéfaction de l'azote liquide, 77K[26]. En utilisant la stratégie du ferrimagnétisme, Sylvie Ferlay a obtenu un aimant qui s'ordonne un peu au-dessus de la température ambiante (42°C ou 315K)[27]. Deux points méritent d'être soulignés dans ce résultat : le caractère rationnel de l'approche et la possibilité qu'il offre désormais de passer aux applications pratiques des aimants à précurseurs moléculaires. Un exemple est donné sur la figure 10. L'aimant à précurseur moléculaire est dans une ampoule dans un gaz inerte (argon) car exposé à l'air, il perd ses propriétés. Il est suspendu à un point fixe, comme un pendule. Quand il est froid, il est attiré par un aimant permanent (1). En ce point, il est chauffé par un faisceau lumineux (lampe, soleil). Quand sa température dépasse la température d'ordre, il n'est plus attiré par l'aimant et repart vers la verticale (2). Hors du faisceau, l'air ambiant le refroidit (3) et il est à nouveau attiré : d'où un mouvement oscillant où l'énergie lumineuse se transforme en énergie mécanique, en utilisant deux sources gratuites d'énergie : l'énergie solaire et l'air ambiant. Des millions de cycles ont ainsi été effectués sans fatigue du système. La recherche de nouveaux matériaux magnétiques moléculaires est très active, au niveau national et international. Certains matériaux sont capables de présenter plusieurs fonctions (magnétisme modulé par la lumière pour l'enregistrement photomagnétique)[28], aimants optiquement actifs (qui font tourner à volonté la lumière polarisée soit à droite soit à gauche)[29] … Matériaux pour l’électronique moléculaire[30] L'un des développements le plus excitant est celui des matériaux pour l’électronique moléculaire. Sous ce terme se cachent diverses interprétations : matériaux moléculaires pour l'électronique (dont les cristaux liquides ou les polymères sont des exemples) ou l'électronique à l'échelle de la molécule. Tous les exemples que nous avons cités jusqu'à présent faisaient intervenir des ensembles macroscopiques de molécules, i.e. des moles de molécules. La recherche se développe pour concevoir et réaliser des molécules se prêtant à des expériences d'électronique sur une seule entité moléculaire avec notamment des techniques de microscopie à champ proche (où la molécule joue le rôle de conducteur, de diode, de photodiode …). Par exemple le mouvement de miniaturisation de l'électronique (électronique portable, enregistrement de quantités de plus en plus grande d'information sur des surfaces de plus en plus petites, calcul quantique …) peut aboutir à la mise au point de dispositifs permettant de stocker l'information à l'échelle ultime, celle d'une seule molécule[31]… Le présent se conjugue déjà au futur. Conclusion Dans un monde qui va vers plus de complexité, le développement des matériaux moléculaires n'en est qu'à son début. Les possibilités offertes par la flexibilité de la chimie moléculaire et supramoléculaire qui ont ouvert ce cycle de leçons[32], la chimie des métaux de transition et la chimie du carbone, sont pour l'essentiel inexplorées mais immenses[33]. La compréhension fondamentale et pluridisciplinaire des propriétés de la matière, la capacité du chimiste à maîtriser la synthèse pour obtenir les propriétés souhaitées peuvent permettre de répondre de mieux en mieux aux nouveaux besoins de l'homme et de la société. À eux d'en faire bon usage. Remerciements Ce travail sur les matériaux moléculaires a été alimenté par de nombreuses discussions dans mon équipe, dans mon laboratoire et dans les nombreux établissements que j'ai fréquentés et financé par le Ministère de l'Education Nationale, le C.N.R.S., les contrats européens M3D et Molnanomag, l'ESF (Molecular Magnets). Les expériences ont été préparées par F. Villain. Les matériaux présentés ont été aimablement prêtés par de nombreux fournisseurs auxquels je suis reconnaissant. Je dédie cette contribution à la mémoire de deux scientifiques français dont j'ai beaucoup appris, Olivier Kahn décédé en décembre 1999 et Louis Néel, prix Nobel de Physique 1970, dont j'apprends la disparition.
[1] Elsa Triolet, L’âge de nylon, Œuvres romanesques croisées d'Elsa Triolet et d'Aragon, Robert Laffont, Paris, 1959. [2] Jacques Simon, Patrick Bernier, Michel Armand, Jacques Prost, Patrick Hémery, Olivier Kahn, Denis Jérôme, Les matériaux moléculaires, p. 401-404, La Science au présent, Tome II, Encyclopædia Universalis, 1992. P. Bassoul, J. Simon, Molecular materials, Wiley, New York, 2000. [3] J.P. Mercier, G. Zambelli, W. Kurz, Introduction à la science des matériaux, Presses polytechniques romandes, Lausanne, 1999. [4] R.E. Hummel, Understanding Materials Science, Springer, Berlin, 1998. [5] André Leroi-Gourhan, L'homme et la matière, Albin Michel, Paris, 1971. B. Bensaude-Vincent, I. Stengers, Histoire de la chimie, La découverte, Paris, 1993. [6] Encyclopædia Universalis, Paris, 1990, article Textiles (Fibres). Pour la Science, N° spécial, Fibres textiles et tissus biologiques, Décembre 1999. [7] Encyclopædia Universalis, Paris, 1990, article Matériaux. [8] Encyclopædia Universalis, Paris, 1990, articles Liaisons chimiques et Molécule. J.P.Malrieu, ce volume. L. Salem, Molécule, la merveilleuse, Interéditions, Paris, 1979. Y. Jean, F. Volatron, Atomistique et liaison chimique, Ediscience, Paris, 1995. T. A. Nguyen, Introduction à la chimie moléculaire, École Polytechnique, Ellipses, 1994. [9] P.W. Atkins, Molecules, Freeman, New York, 1987 et traduction française. [10] Ben Selinger, Chemistry in the Market Place, Harcourt Brace, Sidney, 1998. [11] Jean Bost, Matières plastiques (Tomes I et II), Technique et Documentation, Paris, 1985. Groupement Français des Polymères, Les polymères, Paris. [12] Encyclopædia Universalis, Paris, 1990, articles Macromolécules, Polymères et Textiles (Fibres). [13] Communication de la société Fort Williams (Lotus), Gien. [14] Communication du service commercial de la SNCF, Paris. [15] Encyclopædia Universalis, Paris, 1990, article Corps gras. Ben Selinger, Chemistry in the Market Place, Harcourt Brace, Sidney, 1998. [16] Encyclopædia Universalis, Paris, 1990, article Cristaux liquides et Mésomorphe (État). [17] Encyclopædia Universalis, Paris, 1990, article Van der Waals. [18] Encyclopædia Universalis, Paris, 1990, article Couleur. [19] Pour la Science, Dossier « La couleur », Avril 2000, notamment G. Bram, N. T. Anh, L'avènement des colorants synthétiques p. 52. [20] Communications de la société Ciba, Paris. [21] Communications de la Société Essilor, Paris. [22] Ben Selinger, Chemistry in the Market Place, Harcourt Brace, Sidney, 1998. [23] L'actualité Chimique, Société Française de Chimie, Novembre 2000, p. 64. [24] O. Kahn, Molecular Magnetism, VCH, New York, 1993. M. Verdaguer et al., Images de la Physique, CNRS, Paris, 2000. [25] O. Kahn, Magnétisme moléculaire, La Recherche, Paris, 1994. [26] V. Gadet et al., J. Am. Chem. Soc. 1992, 114, 9213-9214. [27] S. Ferlay et al. Nature, 378, 701, 1995. [28] M. Verdaguer, Science, 272, 698, 1996. A. Bleuzen, J. Am. Chem. Soc., 2000, 122, 6648. C. Cartier ibid. 6653. d) H. Hashimoto et al. ibid 704. [29] M. Gruselle, C. Train travail en cours. [30] M.C. Petty, M.R. Bryce, D. Bloor, Molecular Electronics, Edward Arnold, Londres, 1995. J. Jortner, M. Ratner, Molecular Electronics, I.U.P.A.C., Blackwell Science, 1997. [31] D. Gatteschi, R. Sessoli et al. Nature 1993, 365, 141. V. Marvaud, travail en cours. [32] J.M. Lehn, Chimie supramoléculaire, VCH, New York, 1997. T.A. Nguyen, J.M. Lehn, ce volume. [33] Dossier : 1999, Année internationale de la chimie, Pour la Science, Décembre 1999, p. 69-84 : J.M. Lehn, J.P. Launay, T. Ebbesen, G. Ourisson … La Science au présent, Encyclopædia Universalis, 1998 ; a) M.W. Hosseini, b) J.P. Sauvage, ; c) P. Bernier.

 

  VIDEO       CANAL  U         LIEN

 
 
 
 

MOLÉCULE

 

 

 

 

 

 

 

MOLÉCULE

PLAN
        *         MOLÉCULE
        *         1. Historique du concept de molécule
        *         1.1. L'hypothèse d'Avogadro
        *         1.2. Le nombre d'Avogadro
        *         2. Mole et masse molaire des molécules
        *         3. Liaisons et stabilité des molécules
        *         3.1. La liaison covalente
        *         3.2. Les liaisons intermoléculaires
        *         4. La représentation des molécules
        *         4.1. La représentation de Lewis
        *         4.2. Les formules développées et semi-développées
        *         4.3. La formule topologique
        *         5. La structure spatiale des molécules
        *         5.1. La méthode VSEPR
        *         5.2. La stéréochimie ou la géométrie des molécules
        *         5.3. Les phénomènes d'isomérie

molécule

(latin moles, masse, avec l'influence de corpuscule)

Cet article fait partie du dossier consacré à la matière.
Particule formée d'atomes et qui représente, pour un corps pur qui en est constitué, la plus petite quantité de matière pouvant exister à l'état libre.

La matière, au sens courant du terme, sous ses différents états est discontinue et formée par l'assemblage d'atome. Dans les conditions usuelles, toutefois, la matière n'est pas, à l'exception des gaz nobles, formée d'atomes isolés et indépendants. Le plus souvent, les atomes s'assemblent pour former des architectures plus volumineuses: les molécules.

1. Historique du concept de molécule
1.1. L'hypothèse d'Avogadro
La notion de molécule, comme entité distincte de celle de l’atome, fut suggérée la première fois en 1811 par l'Italien Amedeo Avogadro qui proposa l’hypothèse selon laquelle le nombre de molécules d'un gaz quelconque dans un volume donné est toujours le même, les gaz étant, dans les mêmes conditions de température et de pression.

Par ailleurs, le Français Louis Joseph Gay-Lussac avait montré expérimentalement en 1809 que les volumes mis en jeu dans les réactions chimiques entre les gaz sont dans des rapports simples. Par exemple, un volume de chlore réagit sur un volume égal d'hydrogène pour donner deux volumes de chlorure d'hydrogène (les trois gaz étant dans les mêmes conditions de température et de pression).
Si nous rapprochons cette constatation expérimentale de l'hypothèse d'Avogadro, nous avons :
1 volume de chlore + 1 volume d'hydrogène = 2 volumes de chlorure d'hydrogène
n molécules + n molécules = 2n molécules
Si de plus nous supposons, en accord avec l'analyse chimique, que le chlorure d'hydrogène correspond à la formule HCl, les 2n molécules de HCl contiennent 2n atomes H et 2n atomes Cl, donc chaque molécule de chlore et d'hydrogène contient deux atomes et la réaction entre le (di)chlore et le (di)hydrogène doit s'écrire :
H2 + Cl2 → 2 HCl (et non H + Cl → HCl).


Bien que reprise, peu de temps après (1814), par le Français André Marie Ampère, l'hypothèse d'Avogadro et la distinction atome-molécule qui en découle sont restées dans l'ombre, jusqu'aux travaux de l'Italien Stanislao Cannizzaro et des Français Auguste Laurent et Charles Gerhardt. La distinction entre atome et molécule conduisait en effet logiquement à considérer ces notions comme reflétant une réalité sous-jacente à celle qu'on peut observer. Cette conception, maintenant universellement adoptée, fut combattue avec vigueur par de nombreux scientifiques qui voyaient là, à tort, une hypothèse non fondée expérimentalement, donc à caractère quasi métaphysique. L’hypothèse d’Avogadro a ouvert la voie à la physique et la chimie modernes en permettant de comparer les masses relatives des molécules et, en définitive, de déterminer les masses atomiques relatives.

1.2. Le nombre d'Avogadro
C'est en hommage à Amedeo Avogadro que le nombre de molécules contenues dans une mole de gaz, soit 22,4 L de gaz (à 0 °C et sous 1 atm ; 1 atmosphère normale = 101 325 pascals ou 1,013 25 bar), nombre déterminé approximativement pour la première fois par l'Autrichien Johann Loschmidt en 1865, s'appelle nombre d'Avogadro. Sa valeur numérique actuellement reconnue est :
NA = 6,022 × 1023
.
2. Mole et masse molaire des molécules
La notion de mole est rendue indispensable par la petite taille des molécules. Elle est liée à la connaissance de leur formule chimique, qui renseigne sur la nature et le nombre de chacun des atomes constituant la molécule. La formule chimique d’une molécule permet ainsi de calculer la masse de celle-ci à partir de celle de ses atomes.
Grâce au choix judicieux de la mole, définie comme le nombre d'atomes de carbone contenus dans 12 g de carbone 12, la masse (en grammes) d'une mole d'un élément donné est égale au nombre de nucléons (protons et neutrons) contenus dans le noyau de l'atome.

Le noyau du carbone 12, par exemple, contient 12 nucléons ; la masse de 6,022 × 1023 atomes de carbone est de 12 g. Les données du tableau périodique des éléments permettent ainsi de connaître la masse d'une mole de molécules. Ainsi, une mole de méthanol de formule CH3OH a une masse de 32 g (12 + 4 + 16), une mole d'eau de formule H2O, une masse de 18 g (2 + 16), etc. Réciproquement, on dit que le méthanol a une masse molaire de 32 g·mol-1, ou que l’eau a une masse molaire de 18 g·mol-1, etc.
Dans le cas des gaz, le calcul est simplifié grâce à la loi d'Avogadro : « Des volumes égaux de différents gaz contiennent le même nombre de molécules. » Quand ces gaz sont dans les mêmes conditions de température et de pression (généralement 0 °C et 1 atm), 32 g d'oxygène (O2), 2 g d'hydrogène (H2) ou 44 g de dioxyde de carbone (CO2) occupent un volume identique de 22,4 L. La mole est donc le facteur qui établit un lien entre les caractéristiques microscopiques des molécules et des quantités (masses ou volumes) macroscopiques plus perceptibles.

3. Liaisons et stabilité des molécules
Les molécules résultent de la formation de liaisons covalentes entre les atomes qui les constituent. L'énergie des atomes liés dans une molécule est beaucoup plus faible que celle des atomes séparés ; la molécule est par conséquent le système le plus stable.

3.1. La liaison covalente

La nature de la liaison est restée longtemps mystérieuse. L'Américain Gilbert Lewis, le premier, proposa en 1916, sans justifications, un modèle qualificatif intéressant : les deux atomes d’hydrogène (H) mettent en commun leur unique électron pour former une paire d'électrons, qui est responsable de la cohésion de la molécule et dite, de ce fait, paire liante.
Ce type de liaison, que Lewis a appelé liaison covalente, permet à chacun des deux atomes H partageant les deux électrons d'acquérir la structure particulièrement stable de l'hélium.
De manière générale, dans une molécule, les atomes réalisent des liaisons covalentes de manière à acquérir une structure électronique stable en octet ou en duet (règle de l’octet et du duet). Une structure en duet implique deux électrons sur la couche électronique externe K ; une structure en octet implique huit électrons sur la couche externe L ou M. Ainsi, le carbone, de symbole C et de numéro atomique 6, a pour structure électronique (K)2 (L)4 et doit réaliser 4 liaisons covalentes pour compléter sa couche L (il est dit tétravalent).

3.2. Les liaisons intermoléculaires
Les molécules sont également soumises entre elles à des forces de liaison intermoléculaires, mais celles-ci sont beaucoup plus faibles que les liaisons covalentes (de l'ordre de quelques kilojoules par mole, contre plusieurs centaines de kilojoules par mole dans le cas de liaisons covalentes), ce qui entraîne des distances intermoléculaires plus grandes que les distances interatomiques dans la molécule. Les distances d'approche, à l'équilibre, entre atomes ou molécules sont en effet d'autant plus petites que les énergies d'attraction sont plus grandes.
Ces interactions existent entre les molécules d'un gaz (non parfait) et justifient la possibilité de liquéfaction puis de solidification d'un gaz quand la température s'abaisse. En effet, le refroidissement entraîne la diminution de l'agitation thermique des molécules, d'où la possibilité de formation d'états condensés, liquide et solide. L'absence par définition de forces intermoléculaires pour un gaz parfait rendrait impossible ce processus.

Inversement, la rupture thermique de ces liaisons intermoléculaires dans le cas d'un mélange de différentes molécules permet la séparation des divers constituants. Ainsi, l'azote, l'oxygène et l'argon sont obtenus industriellement par distillation de l'air liquide. Les énergies mises en jeu, bien que suffisantes pour séparer les constituants, ne permettent cependant pas de casser les molécules. Cela peut se produire à des températures plus élevées, par exemple lors du craquage des molécules d'hydrocarbures des pétroles et lors de la dissociation des molécules de dihydrogène (H2) ; à 5 000 K, sous 1 atm, 95 % des molécules H2 sont dissociées en atomes H. Les atomes, après avoir été séparés, peuvent perdre progressivement leurs électrons (ionisation), donnant naissance, à très hautes températures (plusieurs milliers de degrés), aux plasmas, où les atomes peuvent être totalement ionisés par la perte de tous leurs électrons.

4. La représentation des molécules
4.1. La représentation de Lewis
Dans la représentation de Lewis, chaque atome est représenté par son symbole ; un doublet liant est représenté par un segment entre les symboles des deux atomes liés ; un doublet non-liant est représenté par un segment placé à côté du symbole de l’atome auquel il appartient. Ainsi, les représentations de Lewis des molécules de dihydrogène (H2) et de l’eau (H2O) sont respectivement :

 


4.2. Les formules développées et semi-développées
Les formules développées et semi-développées d’une molécule sont une simplification de leur représentation de Lewis :
• formule développée : on ne représente plus les doublets non-liants des atomes ;
• formule semi-développée : on ne représente plus les liaisons engageant les atomes d’hydrogène. Par exemple, une molécule de méthanol CH4O pourra être représentée comme suit :


4.3. La formule topologique
Elle permet de représenter le plus simplement possible une molécule et est particulièrement utile pour représenter des molécules comportant un grand nombre de liaisons. Les règles d’écriture d’une formule topologique sont les suivantes :
• la chaîne carbonée est représentée par une ligne brisée où chaque segment représente une liaison. Les atomes de carbone et d’hydrogène ne sont pas représentés ;
• chaque sommet de la ligne brisée représente un atome de carbone ;
• les atomes autres que ceux de carbone et d’hydrogène sont représentés par leur symbole. On représente aussi les atomes d’hydrogène auxquels ceux-ci sont liés.
Par exemple, le pentan-1-ol de formule brute C5H12O a la formule topologique suivante :


5. La structure spatiale des molécules
Les liaisons covalentes, responsables de la cohésion des molécules, sont des liaisons fortes, saturées et dirigées. La notion de force se rapporte à l'énergie de liaison.
→ énergie chimique.

       
Par saturation, on entend que, par exemple, l’hydrogène (H) peut s'unir à l’azote (N) pour donner NH3 mais pas NH4 ; la justification électronique de la liaison covalente proposée par Lewis rend compte de cette propriété : l’azote, de numéro atomique 7, a pour structure électronique (K)2 (L)5 et doit donc réaliser 3 liaisons covalentes pour compléter sa couche L (il est dit trivalent), d’où le composé NH3.
Le mot directivité signifie que les liaisons covalentes, unissant un atome à d'autres dans une molécule, forment entre elles des angles définis, imposant ainsi une certaine forme à la molécule.
5.1. La méthode VSEPR

La méthode VSEPR (Valence Shell Electron Pair Repulsion ou « répulsion des doublets électroniques de la couche de valence ») également appelée règle de Gillespie-Nyholm, permet de prévoir l’orientation des liaisons entre les atomes d’une molécule. Cette méthode repose sur l’hypothèse très simplificatrice (qui ne correspond pas à la réalité) que tous les doublets, liants et non-liants de la couche de valence, se positionnent à la même distance du noyau et aussi loin que possible les uns des autres de manière à minimiser leur répulsion. Ainsi, selon leur nombre, les doublets électroniques occupent les sommets de diverses « figures de répulsion » inscrites dans une sphère :

Molécules
Méthode VSEPR
nombre de doublets :    2    3    4
figure de répulsion :    droite    triangle équilatéral    tétraèdre
angles des liaisons :    180°    60°    109,5°

       
Par exemple, les molécules H2O (eau), NH3 (ammoniac) et CH4 (méthane) ayant chacune autour de leur atome central quatre doublets électroniques (deux non-liants et deux liants pour H2O ; un non-liant et trois liants pour NH3 ; quatre liants pour CH4) s'inscrivent sensiblement dans un tétraèdre avec au centre les atomes O, N, C, les atomes H étant situés sur deux, trois et quatre sommets. Les angles de liaison sont donc voisins de 109,5° (104,5° pour H2O, 107° pour NH3 et 109,5° pour CH4).

5.2. La stéréochimie ou la géométrie des molécules

En fait, bien avant la mise en évidence expérimentale de la structure des molécules, quelques chimistes avaient proposé – pour un but essentiellement mnémonique, c'est-à-dire pour représenter le mieux possible les propriétés physico-chimiques des molécules – des schémas tels que le tétraèdre pour CH4 (Achille Le Bel et Jacobus Henricus Van't Hoff) ou la forme cyclique du benzène C6H6 (August Kekulé).

Actuellement, des méthodes variées (techniques spectroscopiques, diffraction des rayons X ou des électrons, microscopie électronique) permettent de trouver la structure spatiale des molécules et, quelquefois, d'obtenir des courbes de niveau de densité électronique.
Les molécules peuvent former des chaînes, des cycles, des cages… Ces structures sont représentées par des schémas de Lewis ou, plus correctement, par des modèles moléculaires éclatés ou compacts (voir ci-dessous l’exemple de la molécule de méthane). Les modèles compacts donnent une image de la forme réelle des molécules et de l'encombrement des atomes (modélisés par des sphères) qui les constituent. Ces modèles moléculaires tridimensionnels sont très utilisés en stéréochimie.


Toutefois, en l’absence de modèles moléculaires, il est possible de représenter une molécule en 3 dimensions sur un support à deux dimensions (c’est-à-dire sur une feuille de papier ou sur un tableau noir) en utilisant la représentation de Cram. En effet, celle-ci fait apparaître les liaisons de la molécule en perspective les unes par rapport aux autres, afin de comprendre la structure dans l’espace de la molécule. Les liaisons entre les atomes sont représentées par convention de la façon suivante :
• liaison dans le plan de la feuille :

 
• liaison en avant du plan de la feuille :

 
• liaison en arrière du plan de la feuille :

Par exemple, le méthane de formule CH4 a la représentation de Cram suivante :


5.3. Les phénomènes d'isomérie

       
Notons que les structures des molécules peuvent justifier les phénomènes d'isomérie (la même formule brute correspondant à des composés différents). Par exemple, C4H8O2 peut être l'acide butanoïque ou un diol (isomérie de constitution). Les molécules ne sont généralement pas rigides. Avec la vibration des atomes autour de leur position d'équilibre ou la rotation de groupes d'atomes autour d'un axe de liaison (phénomènes qui se produisent toujours, sauf à 0 K), certaines molécules peuvent changer rapidement de structure. Ainsi, la molécule d'ammoniac s'inverse très rapidement, comme un parapluie par fort vent, avec une fréquence de 23,79 GHz. C'est un exemple de molécule « flexible ».

 

  DOCUMENT   larousse.fr    LIEN

 
 
 
 

COAGULANTS ET FLOCULANTS

 


 

 

 

 

 

Texte de la 279e conférence de l'Université de tous les savoirs donnée le 5 octobre
2000.
Coagulants et floculants
Par Yves Mottot
Coagulants et floculants sont des réactifs chimiques représentatifs de l'évolution de la chimie
dans la seconde moitié du XXe siècle, caractérisée par le passage d'une chimie de commodités
à une chimie de spécialités.
Dans le premier cas les industriels visent surtout à réduire les coûts de production des
molécules de la chimie dite « lourde » telles que les acides phosphorique ou sulfurique, la
chaux ou le carbonate de soude, l'éthanol… fabriquées en très grandes quantités et sans
distinction particulière de qualité d'un producteur à l'autre. À ce niveau de prix, le produit est
souvent utilisé en tant que réactif dans un procédé qui est conçu pour s'adapter aux
caractéristiques et contraintes du produit considéré : par exemple, les équipements d'un atelier
utilisant de l'acide chlorhydrique sont choisis pour résister à la corrosion.
Dans le second cas, les produits sont réalisés « sur mesure » pour répondre au cahier des
charges très pointu d'une application donnée : la silice utilisée dans la fabrication de pâte
dentifrice n'a pas les mêmes caractéristiques que celle mise en oeuvre pour des formulations
des bétons de haute performance.
Ce cahier des charges précise les performances techniques attendues, mais également les
contraintes sur les équipements, la sécurité des opérateurs, et l'impact sur l'environnement.
Si l'on considère les coagulants et floculants industriels, cette transition se traduit par la
substitution progressive de quelques produits (essentiellement le sulfate d'aluminium et le
chlorure ferrique) par des composés tels que les polychlorures d'aluminium ou les polymères
hydrosolubles.
La chimie de spécialités est en constante progression car les applications des produits
évoluent rapidement. Dans le cas du traitement des eaux, application principale des
coagulants et floculants, de gros efforts de recherche et développement sont nécessaires pour
répondre à des exigences de qualités très réglementées imposées par le renforcement
permanent des contraintes environnementales. Les études menées dans les laboratoires de
recherche permettent d'acquérir une connaissance précise des phénomènes physico-chimiques
qui gèrent la mise en oeuvre des produits et d'adapter leurs caractéristiques aux évolutions de
l'application.
Qu'est-ce que la coagulation et la floculation ?
La coagulation est l’ensemble des phénomènes physico-chimiques amenant une suspension
stable ou « sol » de particules de très petite taille en solution - les colloïdes - à se séparer en
deux phases distinctes. Par exemple, le lait est une émulsion stable constituée de globules de
matières grasses en suspension dans une solution aqueuse. L'ajout d'un acide ou d'une
enzyme, la présure, va se traduire par la séparation du lait en deux phases : un gel de caséine,
le « caillé » et un liquide surnageant, le « petit lait ». Le lait a coagulé.
2
La floculation est l'ensemble des phénomènes physico-chimiques menant à l'agrégation de
particules stabilisées pour former des flocons ou « flocs ». Ce phénomène est réversible, c'est
à dire que l'on peut casser ces agrégats, par exemple en agitant fortement le liquide, pour
retrouver la solution de colloïdes initiale.
Coagulation et floculation sont des processus souvent indissociables. En effet, la coagulation,
en diminuant les forces de répulsion entre les particules, favorise les collisions et la formation
d'agrégats ; et la floculation, en permettant la croissance des agrégats accélère la séparation
des phases.
Coagulation et floculation
Une application majeure : le traitement des eaux
Les applications industrielles de la coagulation et de la floculation sont nombreuses. On a cité
la séparation de la caséine du lait qui est l'une des premières étapes de la fabrication de
nombreuses spécialités fromagères. Toujours dans l'industrie agroalimentaire, on trouve
également des étapes de coagulation ou floculation dans la clarification de boissons, vins ou
bières par exemple. Dans un autre secteur industriel, la fabrication du papier, des coagulants
et floculants sont utilisés pour retenir les pigments minéraux opacifiants au sein des fibres de
cellulose lors de la formation des feuilles.
Mais la principale application des coagulants et floculants est le traitement des eaux.
Une eau de rivière, une eau municipale usée ou une eau utilisée dans un procédé industriel
contiennent de nombreux composés qui sont à l'origine de la turbidité, la couleur, voire la
toxicité de cette eau : des matières en suspension, des colloïdes et des matières dissoutes.
Les matières en suspension sont des particules solides minérales (sables, argiles, hydroxydes
minéraux...) ou organiques (acides humiques ou fulviques, réactifs ou sous-produits d'une
activité industrielle...) ainsi que des micro-organismes (algues, bactéries...) dont la taille est
supérieure à un micron environ.
Les matières colloïdales sont des particules de même origine que les matières en suspension,
mais dont la taille est comprise entre environ un micron et un nanomètre. Elles ne
sédimentent pas.
3
Enfin, les matières dissoutes sont des molécules de petite taille, inférieure à quelques
nanomètres : cations, anions, complexes métalliques, gaz dissous. Elles ne sont pas séparées
par des technologies de filtration classiques.
Les coagulants et floculants sont utilisés en traitement des eaux pour rassembler les particules
et colloïdes contenus afin d'augmenter leur taille pour faciliter leur séparation.
Le traitement des eaux, en particulier à usage domestique, implique des opérations de très
grande échelle. Aucun autre procédé de technique séparative ne met en jeu d'aussi grands
volumes. Il est donc nécessaire, compte tenu de la qualité et de la constance du résultat
attendu, de disposer d'un procédé performant.
Les techniques membranaires se développent dans ce domaine, mais la coagulationfloculation
reste actuellement le procédé physico-chimique le moins cher par rapport à la
quantité de particules éliminées. La sédimentation est en effet le procédé de séparation le plus
économique en termes de consommation d'énergie. Les technologies les plus récentes exigent
une vitesse de sédimentation minimum de un mètre par heure. Ce qui correspond - selon la loi
de Stokes, qui énonce qu'une particule sphérique isolée, tombant en régime laminaire dans un
fluide atteint une vitesse V0 proportionnelle au carré de son diamètre- à la vitesse de
sédimentation d'une particule de silice de 1.7 micron dans une eau à 20°C. Il ne serait donc
pas possible par exemple de séparer correctement avec les équipements disponibles dans les
stations d'épuration des bactéries isolées (vitesse de sédimentation de cinquante centimètres
par heure) et encore moins un virus qui mettrait deux années pour parcourir un mètre ! La
coagulation-floculation permet d'agréger ces particules colloïdales en flocs d'une taille
comprise entre 100 microns et quelques millimètres, suffisamment denses pour sédimenter
facilement.
Essais au laboratoire : tests de coagulation et floculation (Jar tests) en traitement d'un
effluent industriel.
Les coagulants utilisés sont des sels d'aluminium ou de fer hydrolysables ou des polymères
organiques. Les phénomènes physico-chimiques lors de la mise en oeuvre de ces produits ne
sont pas simples, et de nombreux laboratoires poursuivent des recherches d'optimisation de
ces produits et de leur mode d'application.
4
Aspects théoriques : stabilité des suspensions colloïdales.
Les particules en suspension dans l'eau sont soumises à des forces opposées qui varient avec
la distance entre ces particules. L'énergie potentielle d'interaction entre deux particules est la
somme de l'énergie d'attraction de van der Waals et de l'énergie de répulsion électrostatique
liée aux charges de surface des colloïdes. Aux valeurs de pH habituelles d'une eau de surface
(pH compris entre 5 et 8), la surface des colloïdes est en effet généralement chargée
négativement.
Attraction et répulsion entre deux particules : théorie DLVO
Lorsque les particules se rapprochent sous l'effet du mouvement brownien ou de l'agitation de
la solution, l'énergie d'interaction quasi nulle à grande distance devient négative : les
molécules s'attirent. Puis les forces électrostatiques deviennent prépondérantes. Les particules
se repoussent. Cette énergie de répulsion est maximale à un niveau correspondant à l'énergie
d'activation ou « barrière d'énergie » Emax. Le système est d'autant plus stable que Emax est
élevée. Si l'on arrive à surmonter cette barrière énergétique, les forces attractives deviennent
à nouveau prépondérantes et il y a coagulation. Pour cela, il faudrait agiter ou chauffer l'eau
pour que l'énergie cinétique des particules soit supérieure à Emax, ou bien il faut réussir à
abaisser la valeur de la barrière d'énergie.
L'apport énergétique nécessaire étant considérable compte tenu des volumes mis en jeu, il est
bien préférable de chercher à diminuer Emax par un ajout de cations susceptibles de neutraliser
la charge de surface en s'adsorbant sur la surface des particules.
Il est possible de mesurer la différence de potentiel qui existe entre le voisinage d'une
particule et le sein du liquide à l'aide d'un appareil appelé zêtamètre qui la détermine par
observation de la migration des particules sous l'action d'un champ électrique. Sous
l'influence du champ électrique, les particules se déplacent jusqu'à atteindre une vitesse limite
correspondant à l'équilibre entre la force électrique d'attraction et la force de friction due à la
viscosité du milieu. La valeur du potentiel électrique correspondant, appelée "potentiel zêta"
ou potentiel électrocinétique, est indépendante du diamètre de la particule. Le potentiel zêta
5
caractérise la stabilité d'une suspension de colloïdes : plus sa valeur absolue est élevée et plus
le système est stable.
Les modes d'action des coagulants et floculants.
Les particules colloïdales présentes dans les eaux naturelles ne peuvent pas sédimenter en
raison de leur faible dimension. Elles ne peuvent pas s'agglomérer puisqu'elles sont chargées
négativement et que les forces électriques de répulsion prédominent sur les forces d'attraction.
Pour favoriser la séparation des colloïdes, il faut d'une part déstabiliser la suspension par
annulation du potentiel zêta - c'est l'étape de coagulation - et augmenter la taille des
microflocs issus de la coagulation - c'est l'étape de floculation.
Il y a plusieurs modes de déstabilisation des colloïdes :
Dose de coagulant en mole par litre

Modes de déstabilisation d'une suspension de kaolinite
Si l'on introduit des quantités croissantes d'ions sodium Na+, calcium Ca2+ ou aluminium Al3+
à une suspension de kaolinite (dans le cas de l'aluminium, à un pH suffisamment acide pour
éviter son hydrolyse), on observe, à partir d'une certaine concentration en sel introduit, une
brusque diminution de la turbidité (cas A). Cette variation apparaît à des doses différentes
selon la nature de l'ion introduit, mais ces doses sont pratiquement indépendantes de la
concentration en colloïdes. Elles ne dépendent que de la charge ionique de l'espèce
considérée. L'apport de cations (charges positives) dans la solution modifie le potentiel au
voisinage des particules et permet aux particules de se rapprocher. C'est ce que l'on appelle
"compression de la double couche". En raison de la valence des ions, l'effet coagulant de
l'aluminium trivalent est dix fois plus important que celui du calcium, et environ 700 fois plus
important que celui du sodium.

6
La déstabilisation de la suspension de kaolinite par adsorption d'un sel d'ammonium sur la
surface des colloïdes est plus efficace (cas B). Le résultat observé pour ce cation de valence
un est très différent de celui observé par un apport d'ions sodium. En particulier, on constate
que la variation de turbidité est réversible. Les doses correspondant à la déstabilisation puis à
la stabilisation de la suspension sont proportionnelles à la concentration en colloïdes. Ces
phénomènes s'expliquent par l'adsorption des molécules de coagulant à la surface des
colloïdes. Dans un premier temps, les cations adsorbés neutralisent la charge négative à la
surface du colloïde, jusqu'à annuler le potentiel de surface de cette particule. Cela correspond
à la déstabilisation de la suspension. Puis, avec des quantités croissantes d'ions ammonium
adsorbés, la charge de la particule devient positive. Le phénomène s'inverse, se traduisant par
une nouvelle stabilisation de la suspension.
La figure correspondant au cas C montre l'effet d'ajouts croissants d'ions Al3+ dans des
conditions de pH où l'aluminium est hydrolysable. La courbe présente une première zone de
coagulation, puis une restabilisation de la suspension. Si l'on poursuit l'ajout du sel
d'aluminium, on observe à nouveau la déstabilisation de la suspension de colloïdes.
L'hydratation des ions Al3+ conduit à la formation de complexes successifs, ions
polycondensés existant sous forme linéaire, ramifiée ou cyclique, d'autant plus polymérisés
que l'on se rapproche de la précipitation de l'hydroxyde d'aluminium. Ces espèces telles que
Al13O4(OH)24
7+ sont très chargées et très facilement adsorbables. Cela explique, par un
processus équivalent à celui observé pour l'ion ammonium quaternaire, une efficacité
beaucoup plus importante que l'espèce Al3+ non hydrolysée tant pour la coagulation que pour
la restalilisation de la suspension. Enfin, en raison de la charge cationique élevée, l'apport
plus important de sel d'aluminium se traduit par une nouvelle déstabilisation de la suspension
qui est due à la compression de la double couche.
Enfin, la figure D représente l'effet de l'ajout d'une solution d'un polymère cationique de haut
poids moléculaire sur la stabilité d'une suspension de kaolinite. On note à nouveau que la
déstabilisation est réversible et que la zone de déstabilisation est assez étroite. Ceci est
important en pratique, car cela indique qu'il faut éviter de surdoser un polymère en traitement
de coagulation. Le polymère s'adsorbe à la surface des particules colloïdales via les
groupements ammonium. Mais l'adsorption n'est pas seule à l'origine de l'efficacité des
polymères. La molécule s'étend, crée des ponts entre les particules colloïdales et les
rassemble : ces polymères cationiques sont de bien meilleurs floculants que les sels
d'aluminium. Si l'adsorption est trop forte, ou lorsqu'il y a surdosage, le polymère se
comprime sur la particule et il n'y a plus suffisamment de sites disponibles pour le pontage.
On observe alors la restabilisation de la suspension. Il existe donc une dose optimale en
polymère proportionnelle à la concentration en colloïdes. La zone de dosage optimal est très
étroite, ce qui, outre leur coût, constitue le principal défaut des polymères.

7
Floculation par des polymères hydrosolubles.
Des données cinétiques indispensables pour la conception des ouvrages en
traitement des eaux.
En raison des volumes d'eau très importants à traiter, avec parfois des pointes de débits très
élevés en période de fortes précipitations, les équipements de traitement sont souvent
gigantesques. Des données cinétiques précises sont indispensables pour concevoir
correctement la taille des décanteurs et bassins de sédimentation pour la séparation des
particules agglomérées après coagulation et floculation.
L'étape de coagulation, correspondant à l'adsorption des cations et neutralisation des charges
est un processus physico-chimique rapide, généralement d'une durée inférieure à la seconde.
Les paramètres qui influent sur cette étape sont la charge des ions et surtout la concentration
en colloïdes, mais les limitations techniques viennent principalement de la difficulté
d'homogénéiser leur diffusion au sein de l'eau à traiter. Le choix des points d'injection des
produits est primordial.
Après la phase de coagulation, les très petites particules contenues dans la suspension de
colloïdes peuvent se rencontrer par mouvement brownien. Pendant cette phase
d'agglomération dite péricinétique, la variation du nombre de particules est proportionnelle au
carré de la concentration en particules. Elle est d'autant plus rapide que la température est
élevée et la viscosité faible. En théorie indépendante de la vitesse d'agitation, cette phase a
cependant lieu dans des conditions d'agitation intense nécessaire pour homogénéiser l'apport
de réactifs, en particulier lors de la mise en oeuvre de polymères. Cette phase dure
typiquement quelques dizaines de secondes.
Lorsque les particules sont rassemblées en microflocs, la probabilité de collision devient
faible, et la cinétique du processus est alors imposée par le gradient de vitesse dû à l'énergie
d'agitation. On passe en phase dite de floculation orthocinétique.
Pour une suspension homogène, en régime laminaire ou turbulent, la vitesse de floculation
orthocinétique est proportionnelle au gradient de vitesse, au carré de la concentration en
particules ainsi qu'à la puissance trois de la taille des particules.
Il est possible d'optimiser l'agitation de façon à accroître le gradient de vitesse sans cisailler et
casser les flocs formés qui sont de plus en plus fragiles au fur et à mesure que leur taille
augmente. L'agitation, pendant les 10 à 30 minutes généralement nécessaires pour la
floculation, est bien plus lente que lors de la coagulation. La cinétique du processus global est
imposée par cette étape lente qu' est le grossissement des flocs par collision des particules.
Les produits commerciaux
Les réactifs de coagulation et de floculation sont des produits d'origine minérale (sels
d'aluminium et de fer ), des polymères naturels et des polymères de synthèse. Les polymères
sont beaucoup plus chers que les coagulants minéraux, mais leur dose d'emploi est faible, ce
qui peut compenser l'écart de prix. Le prix des sels d'aluminium et de fer varie entre environ
0.5 F et 2 F par kg. En Europe, les principaux producteurs sont les sociétés Rhodia, Atofina et
Kemira. Les polymères anioniques sont vendus entre 15 et 30 F par kg et les polymères
cationiques entre 20 et 50 F par kg. En Europe, les principaux producteurs sont les sociétés
SNF Floerger, Ciba, Nalco et Stokhausen. Les prix dépendent aussi de la quantité achetée, du
conditionnement et du transport.
Les sels de fer et d'aluminium sont souvent appelés « coagulants minéraux », bien que
certains d'entre eux, comme les sels d'aluminium polymérisés aient des propriétés de
8
floculants. Mais ce sont bien les coagulants les plus efficaces car ils présentent une densité de
charge positive particulièrement élevée.
Les sels d'aluminium commerciaux sont généralement caractérisés par leur teneur en
aluminium, exprimée en % Al2O3 (représentative de la « matière » active contenue) et par la
« basicité » du produit, exprimée par le rapport molaire (OH-) / 3 (Al3+) (représentative du
degré de polymérisation des ions aluminium). La réaction de base, lors de l'ajout d'un sel
d'aluminium dans une eau, est la précipitation de l'hydroxyde d'aluminium et la libération
d'acide.
Al3+ + 3 H2O = Al(OH)3 + 3 H+
Les principaux produits commercialisés sont le sulfate d'aluminium, le chlorure d'aluminium,
l'aluminate de sodium, et les sels polymérisés : polychlorure et polychloro-sulfate
d'aluminium.
Le sulfate d'aluminium reste le produit le plus utilisé, mais il est peu à peu déplacé par des
polymères minéraux plus performants. Dans le monde des coagulants et floculants, il est
représentatif du produit de commodité, peu onéreux, mais sans valeur ajoutée particulière. Le
seul critère différenciant les produits du marché est la pureté du produit. En effet, il est
possible de trouver des produits recyclés contenant de nombreuses impuretés, mais les
principaux producteurs proposent des produits de très bonne qualité, répondant aux critères
d'acceptation pour le traitement des eaux potables.
Les polymères d'aluminium agissent à la fois par décharge électrostatique et par pontage des
colloïdes. Ce sont des polychlorosulfates basiques (PACS) de formule générale
AlnOHmCl(3n-m-2k)SO4(k)
Certains produits ne contiennent pas de sulfates : ce sont les polychlorures basiques
d'aluminium (PAC). Plus cher que les sels non polymérisés, leur utilisation conduit à une dose
de traitement inférieure et surtout à une excellente qualité de l'eau traitée, une meilleure
cohésion des boues, une faible teneur en aluminium résiduel... Ces produits sont
particulièrement recommandés pour le traitement des eaux de surface.
Les sels de fer commercialisés en traitement des eaux sont principalement le chlorure
ferrique, le chlorosulafte ferrique et le sulfate ferreux. Ce sont des produits de commodité et
contrairement aux sels d'aluminium, il n'existe pas de sels polymérisés à haut degré de
basicité
Les sels ferriques, plus chargés, ont un meilleur pouvoir coagulant que les sels ferreux.
Comme pour les sels d'aluminium, des espèces polycondensées apparaissent au cours du
traitement, et sont fortement dépendantes du pH. L'utilisation d'un sel ferrique à dose élevée
induit souvent une coloration rouille de l'eau traitée : c'est le principal inconvénient de ces
produits.
Les floculants organiques naturels sont des polymères hydrosolubles d'origine animale ou
végétale. Généralement non ioniques, ils peuvent être modifiés chimiquement. Leur poids
moléculaire est plus faible que celui des polymères de synthèse, ce qui leur confère de moins
bonnes propriétés de floculation. Leur intérêt réside dans leur caractère "naturel", non
toxique, biodégradable ... Les plus utilisés sont les amidons, les alginates et les gommes guar
ou xanthane. Ces produits sont cependant réservés à des applications très spécifiques car ils
sont chers, parfois rares comparativement à la taille du marché de traitement d'eau (cas des
gommes guar par exemple), et ont une efficacité réduite en raison de leur faible longueur de
chaîne.
9
Les coagulants et floculants organiques synthétiques sont des polyélectrolytes hydrosolubles
de haut poids moléculaire et de différentes ionicités, obtenus par polymérisation d'un ou de
plusieurs monomères. On distingue les coagulants, à forte charge cationique et poids
moléculaire relativement bas (104 à 105), dont un exemple est le DADMAC (chlorure de
diallylmethylammonium) et les floculants, de très haut poids moléculaire (106 à 107) et charge
ionique très variable dont les principaux sont les polyacrylamides. Les sociétés qui produisent
ces produits proposent plusieurs dizaines de produits différents, parfois définis et fabriqués
pour une application particulière, conditionnés sous forme de poudre ou d'émulsions prêtes à
l'emploi : il s'agit réellement de chimie de spécialités.
Domaine d'application non Anionique Cationique
ionique


Domaines d'application des floculants polymères synthétiques.
On peut comparer les applications de ces coagulants organiques avec celles des sels
minéraux. En fait, les deux gammes de produits sont plutôt complémentaires en raison de
leurs tailles moléculaires différentes. Les meilleurs résultats sont souvent obtenus par des
systèmes combinés. En France, ces produits organiques ne sont pas autorisés en traitement de
potabilisation des eaux de surface, car leurs monomères sont toxiques.
Exemple d'application : le traitement chimique des eaux de surface (eau potable)
Les eaux de surface sont rarement potables. Le grand publique entend parler généralement de
nitrates, de phénols, de PCB, de dioxines, de pesticides, de bactéries et virus... Chacun de ces
polluants fait l'objet de contrôles analytiques spécifiques, et de traitements particuliers
(ozonation, adsorption sur charbon actif...). Mais les polluants les plus abondants sont des
acides humiques, issus de la décomposition des plantes, souvent responsables de mauvais
goût ou de mauvaise odeur, les fines particules minérales responsables de la turbidité de l'eau,
et les polluants organiques qui incluent les matières humiques, mais également les
hydrocarbures, les huiles.... Trois paramètres mesurés permettent d'indiquer la teneur en ces
éléments polluants dans une eau : la couleur, la turbidité et la D.C.O. (demande chimique en
oxygène).
10
Après dégrillage et ajustement du pH, le coagulant est introduit au niveau du réacteur de
précipitation. L'opération de mélange est critique, et divers types de mélangeurs rapides
peuvent être utilisés. Les flocs sont séparés par sédimentation ou flottation. Finalement, un
filtre à sable permet de retenir les flocs résiduels. Les boues issues de ce traitement sont de
nature essentiellement minérale, en raison de l'hydroxyde d'aluminium apporté par le
coagulant. Ces boues peuvent être rejetées dans le milieu naturel, en aval de la station
d'épuration.
Pour cette application « eau potable », la qualité des produits est importante, et ils doivent
répondre à des normes de qualité strictes.
Un nécessaire effort de Recherche et Développement.
Il est souvent difficile compte tenu de la multiplicité des produits commerciaux proposés de
déterminer a priori le réactif optimal et surtout la dose d'emploi, que ce soit pour le traitement
des eaux ou le conditionnement des boues. Des essais préliminaires en laboratoire sont
indispensables pour définir le produit adapté et ses conditions de mise en oeuvre. Ces essais
doivent être renouvelés périodiquement, et bien entendu en cas de dysfonctionnement du
système par suite de variations de la nature ou de la concentration des colloïdes de l'eau brute.
D'autre part, les enjeux de qualité liés à l'application très sensible qu'est le traitement des eaux
impose une constante recherche de nouveaux produits tels que des polymères plus facilement
biodégradables, des polymères naturels fonctionnalisés, des formulations … ainsi que la
recherche d'innovations pour des applications en développement telles que le
conditionnement des boues ou l'association de ces produits avec des procédés membranaires.

 

 VIDEO       CANAL  U         LIEN

 

 VIDEO  DE  LA  CONFÉRENCE        LIEN

 

consulter  le  document  PDF

 
 
   Fichier à télécharger : CHIMIE 1
 
Page : [ 1 2 3 4 5 6 7 8 9 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google