|
|
|
|
|
|
ORIGINE DES OCEANS TERRESTRES |
|
|
|
|
|
Paris, 5 octobre 2011
Comète Hartley 2 - Herschel : nouveau regard sur l'origine des océans terrestres
Une équipe internationale, incluant quatre chercheurs de l'Observatoire de Paris et du CNRS, annonce avoir découvert la première comète - 103P/Hartley 2 - qui renferme une eau similaire à celle des océans terrestres. Ce résultat, obtenu avec le télescope infrarouge Herschel de l'ESA, relance le débat à propos de l'origine de l'eau sur la planète bleue. Certains petits corps glacés du Système solaire pourraient bien avoir joué un rôle d'apport céleste. L'information paraît en ligne le 5 octobre 2011 sur www.nature.com et le 13 octobre dans la revue Nature.
D'où vient l'eau des océans ? La question taraude les scientifiques depuis des décennies. Ils penchent aujourd'hui unanimement en faveur d'une origine extraterrestre de l'eau qui couvre les deux tiers du globe. La Terre était sèche et chaude à l'origine. La molécule d'eau y aurait, ensuite, été apportée par le bombardement de corps célestes. Comment ? Et par quel type d'objets : météorites, astéroïdes, comètes ? C'est tout l'enjeu du débat que viennent enrichir les dernières données d'observation de la comète Hartley 2, obtenues par le télescope spatial infrarouge européen Herschel. Ce résultat provient d'une étude menée en ondes submillimétriques, inobservables depuis le sol. L'équipe internationale, qui inclut des chercheurs du Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique LESIA (Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Université Paris Diderot), a détecté pour la première fois l'eau mi-lourde HDO, forme particulière de l'eau H2O, au sein d'une comète issue de la ceinture de Kuiper, vaste réservoir d'objets glacés qui s'étend à grande distance du Soleil, au-delà de Neptune.
Un bon outil de diagnostic physico-chimique ici est le rapport relatif entre les abondances de deux molécules : l'eau ordinaire H2O (deux atomes d'hydrogène et un atome d'oxygène) et l'eau mi-lourde HDO où un atome de deutérium (deux fois plus lourd) remplace un hydrogène. Dans les océans, le rapport deutérium à hydrogène D/H vaut environ 0,0156 % : un chiffre similaire à celui trouvé dans les météorites issues de la ceinture des astéroïdes entre Mars et Jupiter. Dans les six comètes étudiées jusque-là, dont les célèbres Halley et Hale-Bopp, le rapport apparaît deux fois supérieur à celui trouvé sur Terre. Ceci semblait identifier les astéroïdes comme la principale source de l'eau terrestre. Les comètes n'auraient pas contribué pour plus de 10 %.
La nouvelle étude ramène pourtant ces dernières sur le devant de la scène : les comètes auraient bel et bien pu contribuer à l'eau terrestre. Hartley 2 découverte en 1986 est réapparue dans le ciel à quatre reprises depuis. Sa dernière incursion est intervenue en 2010. Le 20 octobre, elle est passée au plus près de la Terre, à 16 millions de kilomètres. Le télescope Herschel a ainsi pu la scruter le 17 novembre à l'aide du spectromètre Heterodyne Instrument for Far Infrared HIFI, meilleur instrument actuellement disponible pour détecter l'eau dans l'espace. Le rapport deutérium/hydrogène relevé est de 0,016 %. Une valeur semblable à celle des océans.
Ce résultat inattendu reflète sans doute la provenance spécifique de la comète Hartley 2 qui revient aujourd'hui tous les six ans près du Soleil : très probablement née au sein de la ceinture de Kuiper, au-delà de Neptune, elle a pu en être éjectée il y a quelques dizaines à centaines de milliers d'années. D'où sa composition différente. De leur côté, les six comètes précédemment étudiées se seraient formées près des planètes géantes du Système solaire. Leurs orbites perturbées les ont, ensuite, conduites à rejoindre le nuage de Oort, à plusieurs dizaines de milliers de fois la distance Terre-Soleil, ou plusieurs centaines de milliards de kilomètres du Soleil.
Le réservoir de petits corps présentant une eau semblable à celle de la Terre s'avère, en définitive, plus grand que prévu : il s'étend bien au-delà de la ceinture des astéroïdes, entre Mars et Jupiter, et irait jusqu'à la ceinture cométaire de Kuiper, au-delà de Neptune.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
EXPANSION DE L'UNIVERS |
|
|
|
|
|
Paris, 25 mars 2010
Une nouvelle preuve de l'accélération de l'expansion de l'Univers grâce à Hubble
Une collaboration européenne, à laquelle participent trois chercheurs de l'Institut d'astrophysique de Paris (CNRS / UPMC, OSU/INSU (1)), vient de confirmer, en utilisant l'effet de lentilles gravitationnelles, que l'Univers est en expansion accélérée. Les astronomes se sont appuyés sur les données du relevé COSMOS du télescope NASA/ESA Hubble afin de cartographier précisément la zone du ciel couverte par le relevé. Cette carte tridimensionnelle leur a permis de tester certains aspects de la théorie de la relativité générale d'Einstein. Leurs résultats s'accordent avec l'hypothèse que la constante cosmologique, paramètre qui avait été postulé par Einstein dans ses équations, serait l'une des causes possibles de l'accélération de l'expansion de l'Univers. Ils vont être publiés en avril dans la revue Astronomy & Astrophysics.
Depuis les années 30, les astronomes ont acquis la conviction que seule une faible fraction de la masse contenue dans l'Univers est constituée de matière visible. Le reste serait une matière encore inconnue, la "matière noire", qui n'absorberait, ni n'émettrait de la lumière, mais qui interagirait néanmoins avec la matière classique à travers les interactions gravitationnelles. Ainsi, les galaxies ne seraient que la partie visible d'un iceberg constitué de matière noire. Comment faire pour observer cette matière invisible ? Les astronomes profitent l'effet de lentille gravitationnelle, prédit par la relativité générale d'Einstein. « Durant son voyage jusqu'à nous, la lumière émise par les galaxies distantes voit son trajet légèrement perturbé par l'influence de l'interaction gravitationnelle causée par la matière alentour, y compris bien sûr la matière noire. Cette perturbation déforme l'image des galaxies. Cette déformation peut être mesurée et utilisée pour reconstruire une carte des interactions gravitationnelles subies par la lumière sur son trajet, et donc de la matière située entre nous et la galaxie observée », explique Martin Kilbinger, chercheur à l'Institut d'astrophysique de Paris.
Cette étude repose sur les données collectées sur 446 000 galaxies observées dans le champ du relevé COSMOS. Il s'agit de la plus grande campagne d'observation jamais menée par les astronomes à l'aide du télescope Hubble. Ce relevé est constitué de l'assemblage de 575 prises de vues de la même zone du ciel, à l'aide de l'Advanced Camera for Survey (ACS), ce qui représente près de 1000 heures d'observation, soit 600 orbites du télescope. « Le nombre de galaxies observées est considérable, mais la quantité d'information de grande qualité que nous avons pu obtenir sur la partie invisible de l'Univers l'est encore plus », souligne Tim Schrabback qui a piloté ce travail. En complément des données recueillies par Hubble, les chercheurs ont aussi utilisé des données acquises à l'aide de télescopes au sol afin de mesurer finement la distance de 194 000 des galaxies étudiées. Grâce à ces mesures et à de nombreuses innovations sur le traitement des données, les chercheurs ont mesuré la déformation due aux effets de lentilles gravitationnelles. Ils sont parvenus à reconstruire une carte tridimensionnelle de toute la matière (y compris la matière noire) contenue dans la portion du ciel observé par Hubble. « Sur cette carte, nous voyons la distribution de matière évoluer dans le temps », précise William High de l'université d'Harvard. En effet, du fait de la vitesse finie de la lumière, les structures de la distribution de matière les plus lointaines sont aussi les plus anciennes, tandis que celles plus proches de nous correspondent à des structures plus contemporaines. C'est donc en comparant les structures lointaines et proches que les chercheurs ont pu mesurer l'effet de l'expansion sur la structuration de la matière dans l'Univers, et apporter une nouvelle preuve de l'accélération de cette expansion. Cette accélération, observée ces dernières années, est pour la première fois confirmée en utilisant l'effet de lentille gravitationnelle seul. Les chercheurs démontrent ainsi la validité et l'intérêt de cette méthode de reconstruction tomographique.
De manière plus générale, ce travail a permis aux chercheurs de tester deux concepts d'Einstein : la relativité générale et la constante cosmologique, que lui-même nommait sa "plus grande bêtise". Les résultats sont en accord avec ces deux concepts. Ils montrent que l'effet de lentille gravitationnelle évolue en fonction de la distance des galaxies exactement comme le prédit la relativité générale, et que la constante cosmologique ou bien sa généralisation souvent nommée "énergie sombre" sont très probablement la cause de l'accélération de l'expansion de l'Univers. « Einstein avait finalement peut-être raison d'introduire cette constante dans ces équations », conclut Tim Schrabback.
DOCUMENT CNRS LIEN |
|
|
|
|
|
|
LA MATIERE NOIRE |
|
|
|
|
|
Paris, 21 février 2008
270 millions d'années-lumière : la plus grande structure de matière noire jamais observée
Une équipe de 19 astronomes français et canadiens a découvert l'existence de structures de matière noire mesurant 270 millions d'années-lumière, soit plus de 2 000 fois la taille de notre Galaxie. Il s'agit des plus grandes structures observées à ce jour. C'est en analysant les images produites dans le cadre du grand relevé du ciel "Canada-France-Hawaii Telescope Legacy Survey" (CFHTLS), que les chercheurs, pilotés par l'Institut d'astrophysique de Paris (1), l'Université British Columbia et l'Université de Victoria, ont observé les effets de distorsions gravitationnelles produits par ces structures cosmiques. Ils ont ainsi découvert comment matière et énergie noires ont participé à la construction et à l'agencement des grandes structures de l'Univers actuel. Publié dans Astronomy & Astrophysics en février 2008, ce résultat offre un éclairage nouveau et sans précédent sur l'histoire de la formation de ces structures et sur les propriétés de cette mystérieuse matière noire, qui est tout de même cinq fois plus abondante dans l'Univers que la matière "ordinaire".
Les astronomes savent depuis quelques temps que l’Univers est rempli d’une énigmatique matière noire. Cette matière invisible forme des structures géantes de filaments, de feuilles et d’amas. La manière précise avec laquelle cette "trame cosmique" est répartie a longtemps intrigué les scientifiques.
Une équipe internationale de 19 astronomes (2) vient de découvrir des structures de matière noire mesurant jusqu’à 270 millions d’années-lumière. Ces structures s’étendent sur des distances représentant plus de 2 000 fois la taille de notre galaxie, la Voie Lactée. Une longueur qui n'avait jamais été détectée jusqu'à ce jour, le précédent record avoisinant les 100 millions d'années-lumière ! Les distances observées sont ainsi trois fois plus grandes que ne l'étaient celles des précédentes analyses.
Pour y parvenir, les scientifiques utilisent une technique relativement nouvelle, dite de "lentille gravitationnelle faible". Petite explication… La lumière des galaxies lointaines est déviée par la matière noire pendant son trajet vers nous à travers l’Univers. De la même manière que la structure osseuse du corps humain est rendue visible sur les radiographies en rayons X, la matière noire laisse son empreinte dans la signature lumineuse des galaxies, révélant sa présence par la gravité qu’elle exerce. Cela se traduit par des effets de distorsions gravitationnelles. Mesurer précisément ces effets, prédits par Einstein, tel fut l'objectif principal du grand relevé du ciel "Canada-France-Hawaii Telescope Legacy Survey" (CFHTLS).
Coordonnée par l’Institut d’astrophysique de Paris (IAP, CNRS / Université Paris 6 / Observatoire des sciences de l'univers), l'Université British Columbia et l'Université de Victoria au Canada, l'équipe a passé plusieurs années à développer des outils pour analyser les images obtenues par la plus grande caméra numérique du monde, MegaCam (3), équipant le télescope Canada-France-Hawaii (CFHT) (4). Ces résultats représentent une avancée sans précédent : de si grandes échelles et de si petits signaux n’avaient encore jamais été explorés auparavant.
DOCUMENT CNRS LIEN
« Nos observations repoussent les limites de notre connaissance de la trame cosmique bien au-delà de ce qui était connu jusqu’alors », explique Liping Fu. « Nous confirmons ainsi la validité de notre modèle de l’Univers, y compris jusqu’à ces très grandes échelles. Les mesures aux grandes échelles, ajoute-elle, présentent l’avantage d’être facilement comparables aux prédictions théoriques ». Elles permettent de déterminer la composition de l’Univers, ce qui est fondamental pour comprendre son histoire et son évolution, mais aussi prédire son devenir à long terme.
De plus, « ces résultats montrent que les lentilles gravitationnelles faibles sont une technique fiable et précise pour la cosmologie » souligne Yannick Mellier de l’IAP. La prochaine génération de télescopes et de caméras mesurera les effets de ces lentilles à travers l’ensemble du ciel, sur des milliards de galaxies. Ces relevés contribueront à révéler la nature, pour l'instant mal connue, de la matière noire et apporteront un éclairage précieux sur le mystère encore plus grand queconstitue l’énergie sombre.
|
|
|
|
|
|
|
ASTROPHYSIQUE 2 |
|
|
|
|
|
Paris, 10 octobre 2012
Cent ans après, la découverte d'un nouveau type de rayons cosmiques
Grâce à XMM-Newton1, le satellite européen d'astronomie en rayons X, des chercheurs du CNRS2 et du CEA3 ont découvert une nouvelle source de rayons cosmiques. Au voisinage de l'extraordinaire amas des Arches, près du centre de la Voie lactée, ces particules sont accélérées dans l'onde de choc générée par le déplacement à une vitesse d'environ 700 000 km/h de dizaines de milliers de jeunes étoiles. Ces rayons cosmiques produisent alors une émission X caractéristique en interagissant avec les atomes du gaz ambiant. Leur origine diffère de celle des rayons cosmiques découverts il y a tout juste cent ans par Victor Hess, qui sont issus des explosions de supernovæ. Ces résultats sont publiés dans la revue Astronomy & Astrophysics.
Il y a cent ans, le physicien autrichien Victor Franz Hess découvrait l'existence d'un rayonnement ionisant d'origine extraterrestre, les « rayons cosmiques ». Leur nature est aujourd'hui bien connue. Lorsque certaines étoiles en fin de vie explosent et deviennent des supernovæ, leur matière est éjectée à une vitesse supersonique et génère des ondes de choc qui accélèrent les particules. Certains noyaux atomiques acquérant ainsi une très forte énergie cinétique arrivent jusqu'à la Terre.
Mais les rayons cosmiques de basse énergie4 ne sont pas détectés au voisinage de notre planète, car le vent solaire les empêche de pénétrer dans l'héliosphère. On ne sait donc pas grand-chose de leur composition chimique et de leur flux en dehors du système solaire, mais tout indique qu'ils jouent un rôle important dans la galaxie. Ainsi, en ionisant et en chauffant les nuages interstellaires les plus denses, ils régulent sans doute la formation des étoiles.
Les auteurs de l'article ont commencé par étudier de façon théorique l'émission X que devraient générer des rayons cosmiques de basse énergie dans le milieu interstellaire. Puis ils ont recherché la trace de cette émission théorique dans des données en rayons X accumulées par le XMM-Newton depuis son lancement en 1999. En analysant les propriétés de l'émission X du fer interstellaire enregistrée par le satellite, ils ont alors trouvé les signatures d'une forte population d'ions rapides au voisinage de l'amas des Arches, à environ cent années-lumière du centre de la Voie lactée. Les étoiles de cet amas se déplacent de concert à la vitesse d'environ 700 000 km/h. Les rayons cosmiques sont vraisemblablement produits dans la collision à grande vitesse de l'amas d'étoiles avec un nuage de gaz se trouvant sur leur chemin (Fig. 1). Dans cette région particulière, la densité d'énergie des ions accélérés est environ mille fois supérieure à celle des rayons cosmiques au voisinage du système solaire.
Il s'agit de la première découverte d'une source majeure de rayons cosmiques5 de basse énergie en dehors du système solaire. Cela montre que les ondes de choc des supernovae ne sont pas les seuls objets à pouvoir accélérer en masse des noyaux atomiques dans la galaxie. Ces résultats devraient permettre d'identifier de nouvelles sources d'ions dans le milieu interstellaire et peut-être de mieux comprendre les effets de ces particules énergétiques sur la formation des étoiles.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] Précédente - Suivante |
|
|
|
|
|
|