ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

A D N

 

 

 

 

 

 

 

La modification de l'ADN à la portée de tous
Jean-Philippe Braly dans mensuel 495


daté janvier 2015 -  Réservé aux abonnés du site
Dérivée d'un mécanisme de défense bactérien, une nouvelle technique de suppression et d'insertion de gènes se répand dans les laboratoires. En ligne de mire : l'espoir de traiter de nombreuses maladies génétiques.
« Je ne serais pas surpris que cette innovation révolutionnaire soit très vite récompensée par un Nobel », lançait récemment Alain Fischer, de l'hôpital Necker, l'un des spécialistes français de thérapie génique, ensemble de traitements qui corrigent directement chez les patients des gènes défectueux à l'origine de maladies. L'innovation révolutionnaire en question ? Une technique de génie génétique, aussi efficace que son nom est imprononçable : CRISPR-Cas9. Et Alain Fischer n'est pas le seul à s'enthousiasmer : le jury du prix Breakthrough a récompensé en novembre 2014 Emmanuelle Charpentier et Jennifer Doudna, qui ont reçu chacune 3 millions de dollars pour cette découverte.

En à peine deux ans, des équipes du monde entier se sont approprié CRISPR-Cas9 pour modifier le génome de nombreux types de cellules, tant chez les bactéries que chez les plantes ou chez les animaux, avec une facilité déconcertante. Et en 2014, la technologie a franchi deux nouvelles étapes importantes. D'abord, elle s'est révélée utilisable sur des primates. Ensuite, elle a permis de corriger des maladies génétiques in vivo sur des souris.

Palindromes
CRISPR-Cas9 tire son origine d'études très fondamentales du génome bactérien. En 1987, Atsuo Nakata et son équipe de l'université d'Osaka, au Japon, découvrent de curieuses séquences d'ADN répétitives dans le génome de bactéries Escherichia coli [1]. Dans certaines parties de ces séquences, les quatre « lettres » constitutives de l'ADN forment des suites identiques dans un sens de lecture ou dans l'autre, comme des palindromes.

Ces séquences énigmatiques suscitent toutefois peu d'intérêt. Pour preuve, ce n'est qu'en 2002 qu'on les baptisera officiellement CRISPR (acronyme anglais pour « courtes répétitions en palindrome regroupées et régulièrement espacées »). En 2005, tout de même, des bio-informaticiens découvrent que les morceaux d'ADN intercalés entre ces palindromes sont souvent des séquences d'ADN de virus.

En 2007, des chercheurs de l'industriel laitier danois Danisco découvrent que lorsque les bactéries qu'ils utilisent pour fabriquer des yaourts et des fromages ont des séquences CRISPR, elles survivent mieux aux infections virales. « Il s'agit d'une sorte de système immunitaire capable de garder la mémoire d'une agression par un virus ou une séquence d'ADN étrangère, afin de combattre ce même agresseur lorsqu'il envahit à nouveau la bactérie », résume Christine Pourcel, de l'Institut de génétique et microbiologie d'Orsay, qui a participé à cette découverte.

Bref, les CRISPR agiraient comme une sorte de vaccin. Restait à comprendre comment. Plusieurs microbiologistes à travers le monde vont s'y atteler. Parmi eux : la Française Emmanuelle Charpentier qui travaille alors à l'université suédoise d'Umeå. Avec son équipe, elle va contribuer au décryptage d'un des principaux mécanismes mis en jeu.

Technique de routine
Comme pour n'importe quel gène, chaque séquence CRISPR, qui contient donc de l'ADN viral, est transcrite en plus petites molécules intermédiaires, des ARN, qui contiennent la séquence complémentaire de l'ADN viral. Mais plutôt que d'être ensuite traduits en protéines, ces ARN vont se lier à une enzyme découpeuse d'ADN nommée Cas9. Si cette structure rencontre l'ADN correspondant d'un virus dans la cellule, l'ARN s'y apparie et la Cas9 le coupe en deux. Toutefois, le mécanisme permettant l'accès à l'un des deux brins de l'ADN viral n'est pas encore bien élucidé. En attendant, le système constitue un redoutable attelage pour détecter facilement une séquence d'ADN donnée, puis la découper avec précision.

Ces caractéristiques en feraient un outil rêvé de génie génétique : on pourrait l'utiliser pour supprimer un gène et ainsi découvrir sa fonction ; on pourrait aussi éliminer un gène néfaste ou déficient. Il suffirait de fabriquer en laboratoire un « ARN guide » correspondant au gène que l'on souhaite cibler, puis de l'arrimer à une enzyme Cas9. Cette dernière découperait alors le gène. C'est précisément ce qu'Emmanuelle Charpentier réussit à faire in vitro en 2012, en s'alliant avec sa consoeur Jennifer Doudna, de l'université de Berkeley, aux États-Unis. [2]

Ce résultat a immédiatement enflammé les généticiens du monde entier. Il faut dire que CRISPR-Cas9 possède plusieurs atouts de taille par rapport aux meilleures enzymes découpeuses d'ADN (les nucléases) développées avant lui : nucléases à doigts de zinc (ZFNs), nucléases « TALENs », etc.

Premier atout : la simplicité. En effet, pour se lier à l'ADN cible, ces nucléases concurrentes nécessitent la fabrication de fragments protéiques sur mesure pour chaque gène ciblé, une opération très complexe, notamment à cause de la longueur des fragments protéiques à créer. Tandis qu'avec CRISPR-Cas9, il suffit de fabriquer de petits ARN, une technique déjà utilisée en routine dans les laboratoires de recherche du monde entier, par exemple pour faire synthétiser telle ou telle protéine dans une cellule, ou pour perturber le fonctionnement de gènes. Et en utilisant plusieurs ARN guides, diverses équipes ont très facilement réussi à cibler plusieurs gènes à la fois, y compris dans des cellules humaines.

Multiples applications
Deuxième atout majeur : la rapidité, liée à la simplicité du système. « La mise au point d'un CRISPR-Cas9 prêt à cibler un gène particulier prend une à deux semaines tout compris contre un à deux mois avec une ZFN ou une TALEN », indique Tuan Huy Nguyen, chercheur Inserm au Centre de recherche en transplantation et immunologie (CRTI) de Nantes. Troisième atout enfin, qui n'est pas le moindre, CRISPR-Cas9 est au minimum dix fois moins coûteux que ses concurrents, l'obtention d'ARN sur mesure faisant appel à des techniques de routine en biologie moléculaire.

« En théorie, cette technique ne permet ni de cibler plus de zones du génome ni de le faire plus précisément, tempère Ignacio Anegon, également au CRTI de Nantes, où il utilise CRISPR-Cas9 pour créer des rats génétiquement modifiés. Mais en pratique, en simplifiant le génie génétique et en le rendant accessible à n'importe quel laboratoire, la technique a fait exploser le nombre d'études. Cette démocratisation s'est en effet vite concrétisée par une déferlante de publications confirmant son efficacité sur un très grand nombre de génomes de bactéries, mais aussi d'animaux et de végétaux. CRISPR-Cas9 fonctionne avec la même facilité sur les génomes plus complexes des cellules eucaryotes, où l'ADN est recroquevillé dans un noyau. » Les scientifiques commencent tout juste à entrevoir les mécanismes très complexes mis en jeu par CRISPR-Cas9 pour y parvenir, mais en tout cas, ça marche !

Ainsi, en janvier 2013, quatre équipes annoncent avoir réussi à détruire des gènes cibles dans des cellules humaines. Les applications vont alors s'enchaîner à un rythme effréné et avec succès pour modifier des gènes d'organismes variés : bactéries, levures, riz, mouches, nématodes, poissons-zèbres, rongeurs, etc. Et certains chercheurs modifient légèrement la technique pour que la Cas9 ne coupe pas le gène cible, mais stimule son expression, l'inhibe ou le remplace par un autre... transformant l'outil en une sorte de couteau suisse génétique [fig. 1].

Copier-coller de l'ADN
En 2014, l'outil a franchi deux caps importants : son premier succès sur des primates, et sa capacité à corriger des maladies génétiques sur des souris. Le premier résultat a été présenté en février par Jiahao Sha, de l'université médicale de Nanjing, en Chine [3].

Dans des embryons de macaques asiatiques encore constitués d'une seule cellule, son équipe a injecté cinq ARN guides conçus pour cibler simultanément cinq zones réparties sur trois gènes particuliers, ainsi que le matériel génétique nécessaire à la synthèse de Cas9. Ils ont observé que chez huit embryons ainsi traités, CRISPR-Cas9 avait réussi à agir sur deux des trois gènes cibles. Puis les biologistes ont recommencé l'opération sur 86 autres embryons qu'ils ont transférés dans 29 femelles porteuses. À la publication de l'étude, une seule femelle était arrivée à terme. Elle avait donné naissance à des jumeaux chez lesquels CRISPR-Cas9 avait aussi agi simultanément sur deux des trois gènes.

« Ce résultat montre que CRISPR-Cas9 pourrait être utilisé pour générer des primates modèles de maladies humaines, ce qui constituerait une avancée importante », commente Tuan Huy Nguyen. Enfin, les chercheurs n'ont détecté aucune mutation sur le reste du génome. Un résultat de bon augure si l'on veut un jour utiliser CRISPR-Cas9 pour corriger des cellules humaines malades en laboratoire, avant de les réimplanter aux patients.

Mais c'est surtout fin mars qu'une équipe de l'Institut de technologie du Massachussets, aux États-Unis, a concrétisé le potentiel médical de CRISPR-Cas9 [4]. Ces biologistes l'ont utilisé sur la souris pour corriger une maladie génétique incurable du foie, liée à une mauvaise dégradation de la tyrosine, un acide aminé, la tyrosinémie*. À des souris malades adultes, l'équipe a injecté trois ARN guides ciblant trois séquences d'ADN liées à la mutation, le gène de la Cas9 et le gène sain.

Résultat : environ 0,5 % des cellules du foie, les hépatocytes, ont correctement incorporé le gène sain à la place du gène déficient. Trente jours plus tard, ces cellules redevenues saines ont commencé à proliférer et à remplacer les cellules malades, pour finalement représenter environ un tiers de tous les hépatocytes. Une proportion suffisante pour que les souris survivent malgré l'arrêt du médicament de référence qui réduit la production de tyrosine.

Myopathie de Duchenne
En août dernier, c'est une autre maladie génétique incurable qui a subi la loi de CRISPR-Cas9 : la myopathie de Duchenne. Cette dégénérescence des muscles est due à des mutations sur le gène codant la dystrophine, protéine indispensable au bon fonctionnement des fibres musculaires. Menée à l'université du Texas, aux États-Unis, une étude a porté sur de jeunes embryons de souris juste après fusion de l'ovule et du spermatozoïde, chez lesquels le gène de la dystrophine avait été muté pour mimer la maladie [5].

L'équipe leur a injecté un ARN guide ciblant le gène muté, la Cas9, et un gène destiné à corriger la mutation. Puis les embryons ont été implantés dans des mères porteuses. Ils ont donné naissance à des souris que les chercheurs ont élevées pendant neuf mois. Chez celles dont le taux de cellules correctement corrigées par CRISPR-Cas9 atteignait au moins 40 %, les muscles étaient normaux. « Ces études sur des souris constituent les premières preuves in vivo que CRISPR-Cas9 est capable de corriger des maladies génétiques », commente Tuan Huy Nguyen.

Pourrait-on alors utiliser CRISPR-Cas9 sur l'homme ? Il faudra d'abord franchir plusieurs étapes. « Le point critique sera de confirmer que ce système n'induit pas de lésions dans d'autres régions du génome, prévient Alain Fischer. Et afin d'obtenir un effet thérapeutique, il faudra aussi optimiser la fréquence à laquelle les cellules ciblées sont corrigées. » Voilà pourquoi les recherches vont bon train pour développer des moyens capables de mieux faire pénétrer CRISPR-Cas9 dans les cellules : nanoparticules, Cas9 plus petites, etc.

D'autres applications pourraient toutefois voir le jour : lutte contre les bactéries résistantes aux antibiotiques, applications en agriculture, en virologie, en pharmacie... « Cette technologie concerne tous les domaines de recherche en biologie ! » résume Alain Fisher. « Dérivée d'études très en amont sur les bactéries, cette invention montre l'importance de continuer à investir dans la recherche fondamentale », conclut Emmanuelle Charpentier.
* LA TYROSINÉMIE est une maladie génétique qui génère une accumulation de déchets endommageant le foie.
L'ESSENTIEL
- UNE NOUVELLE MÉTHODE permet de modifier facilement le génome de toutes les sortes de cellules.

- NOMMÉE CRISPR-CAS9, elle est issue d'un mécanisme de défense bactérien découvert il y a moins de dix ans.

- EN 2014, elle a été utilisée avec succès chez des primates et elle a permis de soigner des souris adultes malades.
UN SUCCÈS QUI AIGUISE BIEN DES APPÉTITS
La technique CRISPR-Cas9 qui se répand agite le secteur des biotechnologies. Les sociétés et les laboratoires ayant préalablement investi dans les outils concurrents - ZFNs et TALENs - accusent le coup. Résultat : de nombreuses sociétés se ruent désormais sur CRISPR-Cas9 en proposant des kits prêts à l'emploi. Mais les experts du secteur misent surtout sur les possibles applications médicales de la technologie, au premier rang desquelles la correction de gènes défectueux (la thérapie génique). Emmanuelle Charpentier, aujourd'hui au Centre Helmholtz pour la recherche sur les infections, en Allemagne, et Jennifer Doudna, à l'université de Berkeley, aux États-Unis, qui ont codirigé la découverte initiale, l'ont bien compris : chacune a fondé une société de biotechnologie dans cette optique, respectivement CRISPR Therapeutics (implantée en Suisse et au Royaume-Uni) et Editas (aux États-Unis). Elles ont déjà levé plusieurs dizaines de millions de dollars. Toutefois, d'autres chercheurs essaient de s'accaparer la propriété intellectuelle de l'invention. C'est le cas de Feng Zhang, du Broad Institute à Cambridge, aux États-Unis - également cofondateur d'Editas - qui vient de faire valider un brevet sur CRISPR-Cas9 auprès des autorités américaines grâce à une procédure accélérée... court-circuitant le duo Charpentier-Doudna, dont le brevet commun est toujours en cours d'instruction ! « L'affaire est aujourd'hui entre les mains des avocats », concède Emmanuelle Charpentier, qui préfère rester discrète sur le sujet.

 

 DOCUMENT       la recherche.fr      LIEN

 
 
 
 

LES ENJEUX THIQUES DE LA GNTIQUE

 

 

 

 

 

 

 

Texte de la 31ème conférence de l'Université de tous les savoirs réalisée le 31 janvier 2000 par Axel Kahn

Les enjeux éthiques de la génétique


De tous temps, les sciences de la vie ont eu une résonance individuelle, sociale et parfois politique toute particulière. Cest que le monde vivant, auquel appartient lHomme, est traditionnellement considéré comme relevant du domaine divin. Dailleurs, le vitalisme, un système de pensée excluant lessence de la vie des processus physico-chimiques sappliquant au monde inanimé, a persisté jusquau début de notre siècle, survivant donc pendant plusieurs centaines dannées à lémergence de lesprit scientifique en Europe au XVIIème siècle.

Au XIXème siècle, la théorie de lévolution, qui sapplique à lHomme et le dépossède donc de son privilège de créature à limage de Dieu, a constitué une onde de choc dont les effets se font encore sentir aujourdhui. En effet, les grandes idéologies qui ont si cruellement marqué le XXème siècle, notamment leugénisme et le racisme, ont massivement emprunté à la science de lévolution ce qui leur semblait de nature à conforter leurs préjugés.

La génétique, cest-à-dire létude des lois gouvernant la transmission des caractères héréditaires, est une science encore plus récente puisque, issue des travaux de Gregor Mendel en 1865, elle nest redécouverte, indépendamment de ceux-ci, quau début du XXème siècle. A dire vrai, la génétique a plus modifié lénoncé des idéologies enracinées dans une conception pervertie de lévolution quelle ne les a créées. Il nempêche que cette science, appliquée à lhomme, se fixe pour objectif de déterminer lorigine des caractères humains, des similitudes et des différences, de leur transmission au travers du lignage. Toutes ces questions sont probablement de celles que se posent les communautés humaines depuis lorigine si bien que, après le concept de lévolution, la science génétique devait avoir sur lhistoire du XXème siècle plus de répercussions que tout autre science. Le gène est en effet rapidement devenu lélément de base matérialisé des vieilles conceptions déterministes et des projets eugénistes et racistes. Depuis la nuit des temps, les hommes considèrent que le destin est écrit. Avec la génétique, na-t-on pas reconnu quil létait dans le langage des gènes ? Leugénisme, cest-à-dire la mise en Suvre de politiques volontaires damélioration des sociétés humaines, a dès lors été entendu comme lensemble des activités visant à limiter la diffusion des mauvais gènes dans la population. Les races, considérées antérieurement comme inférieures car à un niveau moindre de lévolution humaine, se sont vues définies par leur faible qualité génétique. Chacun se rappelle les horreurs commises au nom de leugénisme et du racisme, au nom des gènes ! Après guerre, leffroi des sociétés démocratiques à la découverte de létendue des dégâts provoqués par ces idéologies devait largement libérer les sciences biologiques, notamment la génétique, de leur gangue idéologique.

La théorie de lévolution permet de prévoir que les mécanismes gouvernant tous les organismes vivants sont de même nature, puisque tous les êtres dérivent dune même forme de vie originelle. Cest ce que confirme luniversalité du code génétique, cest-à-dire des règles permettant dexpliquer les propriétés biologiques des cellules vivantes à partir de lenchaînement des lettres qui constituent leur matériel génétique. A partir de 1973, la réunion des outils du génie génétique aboutit à une confirmation supplémentaire des déductions tirées de la théorie de lévolution. Tout gène, appartenant à quelque être vivant que ce soit, peut fonctionner lorsquil est transféré dans un autre organisme vivant. Cela signifie quil est possible dasservir génétiquement nimporte quel être à lexpression du programme génétique dun autre être vivant, simplement par transfert de gènes. Cest alors lexplosion des progrès de la biologie durant les vingt cinq dernières années de notre siècle, qui trouvent une illustration éloquente dans les programmes génomes.

Avant deux à trois ans, on connaîtra lenchaînement des quelques 3,4 milliards de lettres constituant notre génome, cest-à-dire les molécules dADN de nos chromosomes qui forment le support moléculaire de nos quelques 80.000 à 140.000 milles gènes. Les enjeux éthiques de ces avancées scientifiques découlent à la fois du caractère sensible de la génétique, proie idéale pour toute les idéologies de la stigmatisation, et de lampleur des connaissances et outils nouveaux engendrés. A lheure du génie génétique et des programmes génomes, il existe sur le plan biologique une unité profonde du monde vivant à laquelle néchappe pas lunivers de lHomme, accessible aux mêmes méthodes détude et de modification génétique que nimporte quel autre organisme, animal, végétal ou microbien. La quête de lessence humaine dans les méandres du génome est donc condamnée à léchec, aboutissant à la négation de la spécificité de lhumain. Loeil rivé sur les gènes et le fonctionnement des cellules, le biologiste risque de négliger ce qui est le plus caractéristique du processus dhominisation, cest-à-dire lédification en dehors du mammifère humain, de ses gènes, du monde symbolique, culturel et des connaissances, enrichi génération après génération par lHomme. Ce nest quaprès imprégnation par cet univers intellectuel quil a progressivement créé que le primate Homo sapiens shumanise. Cependant, bien entendu, ce sont les propriétés biologiques du cerveau humain, inscrites dans les gènes de lHomme, qui gouvernent sa sensibilité aux empreintes symboliques, culturelles et éducatives. En retour, ainsi configurées par acculturation, ce sont les capacités mentales de lHomme qui lui permettent de contribuer à lenrichissement de lunivers culturel et des connaissances.

Le danger est grand que tous ceux qui sont déjà persuadés que le destin humain est déterminé par sa dimension biologique se trouvent confortés dans leurs préjugés par une certaine présentation du programme génome humain et par linterprétation rapide de nombre détudes génétiques, en particulier celles portant sur les comportements. Le destin est écrit, pensaient les Grecs. Il est inscrit dans des êtres biologiques soumis aux mécanismes de lévolution, propose la lecture sociobiologique du darwinisme. Il peut être lu dans ce grand livre de lHomme quest le génome humain, se laissent parfois aller à affirmer des généticiens imprudents ou idéologiquement marqués.

La réalité dun tel danger est illustré pratiquement chaque semaine dans les publications scientifiques et le compte-rendu quen font les médias généralistes. On apprend en effet quont été localisés, identifiés, voire manipulés les gènes de lamour maternel, de la violence, de la curiosité intellectuelle, de la fidélité masculine, de lhomosexualité ... voire de lintelligence. En fait, les progrès récents de la génétique et de la neurobiologie moléculaire ne disent rien de tel. Ce que gouvernent les gènes humains, cest la plasticité cérébrale, cest-à-dire la sensibilité du cerveau de lHomme aux impressions laissées par le milieu socioculturel. Ils sont ainsi le moyen de desserrer létau des comportements innés auxquels sont si étroitement assujettis les mammifères non humains. A ce titre, les gènes humains sont plus le moyen de la liberté que sa limite.

Il nempêche quil serait également déraisonnable de refuser toute forme de déterminisme génétique : les gènes, et cest là leur définition, sont bien des déterminants de propriétés biologiques. Le fait que celles-ci dépendent souvent de lintervention de plusieurs gènes et varient en fonction du contexte de lenvironnement nenlève rien à cette réalité qui fonde la science génétique. En médecine, cela se manifeste par le fait quil est possible de ranger toutes les maladies humaines sur une échelle. A gauche de celle-ci se trouvent les affections qui sont presque totalement déterminées par laltération dun gène. Toute personne ayant hérité dun ou de deux gènes altérés de ses parents, suivant le type de transmission génétique, développera la maladie. Tel est le cas de l hémophilie, de la mucoviscidose, de la myopathie de Duchenne, de la chorée de Huntington ...etc. Un peu à droite de cette position se placent des maladies qui sont très dépendantes de laltération dun gène, mais dont la «pénétrance» cest-à-dire ici le risque associé nest pas total. Ainsi, des personnes ayant hérité dune copie dun gène muté de susceptibilité au cancer du sein ou du colon auront entre 50 et 75% de chances de développer de telles tumeurs, mais certaines personnes y échapperont. Encore plus à droite se situent nombre daffections communes qui sont en partie déterminées par la constitution génétique, souvent par plusieurs gènes, mais également en très grande partie par les habitudes de vie et lenvironnement. On peut citer ici la sensibilité aux infections, à de très nombreux cancers, aux maladies cardio-vasculaires, à lathérosclérose, à lhypertension artérielle, aux formes communes du diabète et de lobésité et, probablement, à nombre de maladies psychiatriques. Enfin, tout à fait à droite de notre échelle on range des maladies sans fondement génétique, dorigine avant tout toxique ou accidentelle. La grande fréquence des affections possédant des déterminants génétiques, absolus ou relatifs, est à lorigine de lessor de ce qui a été appelé «médecine prédictive», ou bien, pour utiliser une désignation mieux appropriée, médecine de prévision. Lorsque la possibilité de prévoir la survenue dune maladie permet de léviter, ou bien den atténuer la gravité, une telle prévision génétique constitue un plein succès de la médecine. Cependant, fréquentes sont les situations ou prévoir ne permet pas encore de prévenir. Lourdes de menaces pour léquilibre psychique des personnes, de telles prévisions débouchant sur limpuissance thérapeutique nont guère dintérêt médical. Cependant, la possibilité de prévoir le destin biologique des individus a un intérêt considérable pour nombre de secteurs dactivité : lassurance privée, qui gagnerait à établir des groupes homogènes de risques dont les membres seraient assujettis à des tarifs différentiels, la sélection des candidats à un emploi salarié, si les tests génétiques permettaient doptimaliser ladéquation entre les employés et le poste de travail ; le prêt bancaire...etc. La généralisation de telles pratiques, dont la logique économique est indéniable, aboutirait ni plus ni moins à un bouleversement de nos sociétés. En effet, lillusion selon laquelle tous les hommes naissent et demeurent égaux en dignité et en droit serait abandonnée puisque les droits réels des personnes ne seraient plus que ceux que leur laissent leurs gènes.

Le développement des recherches en génétique humaine offre bien entendu des outils dune redoutable efficacité pour poursuivre par dautres moyens les vieux desseins eugéniques. Au-delà du diagnostic prénatal de maladies génétiques gravissimes, la tentation se fait jour de soumettre plus généralement les embryons humains à un tri sur la base de caractéristiques moins pathologiques, voire totalement physiologiques tel que le sexe. Ce qui est en cause ici, cest lessentielle irréductibilité des caractéristiques de chaque individu à la volonté normative de tiers, fussent les parents. La prédétermination par ceux-ci du sexe et de laspect dun enfant à naître serait naturellement portée à son maximum par lutilisation du clonage humain à visée reproductive.

Leugénisme à lheure de la génétique, nous lavons vu, revient à lamélioration du potentiel génique dun lignage humain. Le moyen en a été jusqualors la sélection. Le mythe dun eugénisme positif se fixant pour but non pas lélimination des sujets au patrimoine insuffisant, mais laugmentation du potentiel génique par apport de gènes «améliorateurs» est ancien et semble même gagner aujourdhui en consistance, sinon scientifique au moins idéologique. Sur le plan scientifique, les qualités proprement humaines, laptitude à créer du sens, de la beauté, de la bonté sont à lévidence irréductibles à la manipulation grossière de quelques gènes. Cependant on a pu lire à la fin de lannée 1999 sous la plume de certains des auteurs et philosophes les plus éminents du moment lénoncé de scénarios prévoyant une telle modification biotechnologique de lhomme. A ce degré de diffusion du mythe, il devient une réalité sociale et une menace idéologique.

En conclusion, la génétique en elle-même ne dit rien de bien nouveau sur la nature humaine qui ne soit déjà implicite dans la théorie de lévolution. En revanche, elle engendre une série de données et doutils, moralement neutres par eux-mêmes, mais dont laccaparement par les vieilles idéologies du déterminisme, de la stigmatisation et de lexclusion est particulièrement aisé et dangereux. En ce sens, le généticien, conscient de la susceptibilité particulière de son domaine scientifique aux récupérations idéologiques, a une responsabilité élective : non seulement réaliser du mieux quil le peut une science qui fasse honneur au génie humain, mais aussi simpliquer pour la présenter au public, expliquer ce quelle signifie et ce quil est illégitime de lui faire dire. En tant que citoyen, il reviendra ensuite au généticien de prolonger ce travail de recherches et dexplications par un combat citoyen contre toutes les tentatives dasservir lHomme. Sil est parfaitement illégitime de faire dire à la génétique que nous sommes tous prisonniers de nos gènes, la science ne suffit pas non plus à fonder lexigence de liberté. A ce stade, lengagement est dautre nature. Il est moral.

 

DOCUMENT       canal-u.tv     LIEN 

 
 
 
 

MIOSE

 

 

 

 

 

 

méiose
(grec meiôsis, diminution)


Double division de la cellule aboutissant à la réduction de moitié du nombre des chromosomes, et qui se produit au moment de la formation des cellules reproductrices, ou gamètes. (À l'issue de la méiose, chaque cellule diploïde forme ainsi quatre gamètes haploïdes.)
BIOLOGIE

La méiose intervient dans la formation des gamètes mâles (spermatozoïdes) et femelles (ovules), constituant un phénomène régulateur préalable à la fécondation. En effet, si la méiose n'avait pas lieu, les deux gamètes se rencontrant lors de la fécondation auraient chacun 2n chromosomes et formeraient une cellule-œuf anormale à 4n chromosomes.
La méiose est donc un mécanisme particulier de division cellulaire qui aboutit à la réduction de moitié du nombre de chromosomes : elle permet d'obtenir quatre cellules filles haploïdes (à n chromosomes) à partir d'une cellule mère diploïde (à 2n chromosomes).
La méiose implique deux divisions distinctes qui mettent en jeu l'élaboration des fuseaux achromatiques et la migration des chromosomes.
1. La première division de méiose, ou division réductionnelle

Elle est précédée d'une longue prophase durant laquelle s'effectuent l'appariement des chromosomes homologues et des échanges entre chromosomes. La prophase est divisée en cinq stades, dont les noms font référence à l'aspect des chromosomes. La synthèse d'ADN a lieu avant le début de la méiose.


1.1. La prophase 1
Au premier stade, dit leptotène (« filament fin », littéralement), les chromosomes, bien que peu condensés, deviennent visibles. Apparaissent alors des zones limitées de spiralisation croissante, les chromomères. Pour les chromosomes homologues, la taille et la position de ces zones restent identiques.
Au second stade, dit zygotène («filament torsadé»), les chromosomes, au cours d'un processus appelé synapsis, se condensent et se raccourcissent. Les chromosomes homologues s'apparient – les paires individualisées sont alors appelées bivalents. Il n'existe pas de site spécifique d'appariement le long des chromosomes.
Le troisième stade, dit pachytène (« filament épais »), relativement long, se caractérise par une condensation et un raccourcissement accrus des chromosomes, qui présentent finalement un aspect de points et de bâtonnets. Il peut survenir à ce stade des échanges de segments au cours d'enjambements (crossing-over) entre les chromatides de chromosomes homologues.
Au stade diplotène (« filament double »), les paires de chromosomes homologues se séparent partiellement en quatre chromatides. Ils restent attachés en un ou plusieurs points, appelés chiasmas, qui correspondent aux zones de crossing-over, survenus lors du stade précédent. Les paires de chromosomes offrent l'aspect de croix ou de boucles, selon qu'ils s'attachent en un point ou deux. Pendant ce temps, la spiralisation et le raccourcissement des chromosomes suivent leur cours.
Au dernier stade, la diacinèse, la condensation, et donc l'épaississement, est maximale. De plus, les chromosomes tendent à migrer vers la périphérie du noyau. Quelquefois, les chiasmas peuvent se déplacer vers les extrémités des chromosomes, c'est la terminalisation. La rupture de l'enveloppe nucléaire permet la fixation des paires de bivalents au fuseau de microtubules qui s'est formé pendant cette prophase.


1.2. La métaphase 1
Les bivalents ont atteint un état relativement stable ; leurs kinétochores (points d’attache des microtubules sur le chromosome) sont équidistants par rapport à la plaque équatoriale. La forme qu'adopte alors un bivalent dépend de la localisation des kinétochores ainsi que du nombre et de la position de ses chiasmas. Les bivalents présentant un seul chiasma prennent l'aspect d'une croix. L'état de stabilité atteint lors de la première métaphase résulte directement de la tension qu'exercent les fibres centromériques sur les kinétochores de chaque bivalent ainsi que de l'association constante des chromatides sœurs.


1.3. L'anaphase 1
Les chiasmas achèvent leur terminalisation. Les chromosomes homologues de chaque paire se séparent alors ; ils migrent chacun vers un pôle de la cellule. Ce déplacement est dû au raccourcissement des fibres du fuseau, qui entraînent les kinétochores vers les pôles.


1.4. La télophase 1
À ce stade, la membrane nucléaire se reconstitue (une membrane autour de chaque groupe de chromosomes), les nucléoles réapparaissent et la cytocinèse (la division du cytoplasme) a lieu. On obtient alors deux cellules filles à n chromosomes. La quantité de chromosomes a été divisée par deux : c’est pourquoi la première division méiotique est aussi appelée division réductionnelle.


2. L'interphase
Cette étape est particulièrement courte. Il n'y a en effet pas de réplication d'ADN entre la première et la seconde division. Les deux cellules filles issues de la première division méiotique restent haploïdes (n).


3. La seconde division de méiose
Chez certains végétaux, la télophase 1, l'interphase et la prophase 2 sont pratiquement confondues. Toutefois, cette règle n'est pas générale : en effet, la plupart des espèces végétales et animales présentent une seconde division complète.
Au cours de la prophase 2, un fuseau méiotique se constitue, tandis que l'enveloppe nucléaire disparaît.
Lors de la métaphase 2, les demi-bivalents migrent vers le plan équatorial du fuseau, où durant l'anaphase 2 chaque chromosome se scinde longitudinalement en deux chromatides.
C'est à la télophase 2 qu'ont lieu la formation de la membrane des deux noyaux fils, ainsi que la division du cytoplasme (cytocinèse).
Cette seconde division est une division équationnelle, qui permet à chaque cellule haploïde issue de la première division de donner deux autres cellules haploïdes.


4. Les produits de la méiose
Les deux divisions de la méiose répartissent les quatre chromatides de chaque bivalent dans les noyaux de chacune des quatre cellules filles. Ce processus implique que le matériel génétique des produits de la méiose est divisé par deux, réduction rétablie lors de la fusion des deux cellules sexuelles (fécondation).
La méiose entraîne également une recombinaison de chromosomes entiers (réassortiment) ainsi que de certains de leurs segments (enjambements). Le réassortiment est dû au caractère aléatoire du sens de migration des paires de centromères au cours de la première division, et de celui des demi-centromères au cours de la seconde. Il est à l'origine des différences ou des ressemblances entre un enfant et ses parents. Un enjambement consiste en un échange de segments géographiquement semblables entre deux chromatides non sœurs. Ce phénomène a lieu lorsque les chiasmas se sont déjà formés.


BOTANIQUE
Dans le règne végétal, les cellules haploïdes peuvent se multiplier par mitose pendant au moins deux ou trois générations cellulaires et parfois beaucoup plus. Les produits immédiats de la méiose ne sont donc pas toujours les gamètes eux-mêmes. Chez les angiospermes (plantes à fleurs), par exemple, le gamète femelle (oosphère) n'est que l'un de huit noyaux haploïdes issus de trois divisions successives de la cellule mère du sac embryonnaire, tandis que le gamète mâle est issu de deux divisions cellulaires successives au sein du grain de pollen d'abord, puis du tube pollinique.

 

   DOCUMENT   larousse.fr    LIEN

 

 
 
 
 

VIE

 


vie

(latin vita)

Caractère propre aux êtres possédant des structures complexes (macromolécules, cellules, organes, tissus), capables de résister aux diverses causes de changement, aptes à renouveler, par assimilation, leurs éléments constitutifs (atomes, petites molécules), à croître et à se reproduire.
BIOLOGIE

1. Caractéristiques de la vie

Les êtres vivants ont un mode de fonctionnement comprenant des activités spécifiques. Une première consiste à puiser dans leur environnement les substances indispensables à leur fonctionnement, et à rejeter des déchets : c’est le métabolisme. Une autre est la reproduction, qui leur permet de se multiplier. Les êtres vivants réalisent aussi des mouvements, visibles ou non à l’œil nu, sont en contact avec le milieu extérieur (communication) et se maintiennent dans un état relativement constant malgré les changements du milieu où ils se trouvent.
1.1. Vie et mouvement

L’inertie est considérée comme le propre du non vivant, et le mouvement perçu comme l’un des premiers « signes de vie » : la plupart des animaux se déplacent ou, au moins, réalisent des mouvements leur permettant de se nourrir, tandis que l’immobilité des végétaux n’est qu’apparente (circulation de la sève, mouvements de croissance). Pour autant, tout ce qui bouge n’est pas vif. Ainsi le feu, symbole de vie volé aux dieux selon les Anciens, dont la flamme est dynamique, déformable et sensible aux variations du milieu dont elle se nourrit, n’est pourtant pas animé de vie. Inversement, les virus isolés, hors d’une cellule infectée, ne sont que de simples « objets » sans activité autonome : de ce point de vue, ils ne font pas partie du vivant. Pourtant, ils possèdent leur propre information génétique, qui a la même structure que celle des êtres vivants et, quand ils parasitent une cellule, en prennent le contrôle et deviennent alors capables de se reproduire (c’est la raison pour laquelle on dit que les virus sont « à la limite du vivant»). Ainsi, la vie correspond à un ensemble de critères, dont aucun, à lui seul, n’est définitif.
1.2. La cellule, unité de la vie ?

En dehors des virus, particules capables de détourner l’activité de cellules vivantes, tous les êtres vivants sont constitués d’au moins une cellule. Siège du programme génétique, la cellule est propice à une définition du vivant, car elle en est une unité de base, et le plus fondamental des niveaux d’organisation, dont la biosphère représente le niveau le plus complexe (l’exobiologie n’ayant pas encore établi si la vie existe ailleurs dans l’Univers).
2. L'origine de la vie

Les progrès de la synthèse des substances organiques les plus complexes ont démontré que ces « briques de la vie », qui abondent dans le cosmos, ont pu aussi se former sur la Terre dans l'atmosphère qui régnait il y a environ 5×109 ans. Si l'apparition de l'autoreproduction reste inconnue, les progrès vers la cellule, tant procaryote (c'est-à-dire sans noyau délimité, comme les bactéries) qu'eucaryote (avec un noyau, comme toutes les autres cellules), peuvent déjà être dépistés sur des traces fossiles du précambrien. En revanche, l'étude des météorites a conduit à rejeter l'idée d'une pénétration de cellules vivantes depuis le cosmos (panspermie). L'immense réussite de la reproduction s'est traduite dès la fin du précambrien par une diversification explosive des formes de la vie maritime. Mais il faut attendre la fin du silurien pour rencontrer des traces de vie en milieu émergé. En effet, seule l'action prolongée des végétaux verts a pourvu l'atmosphère en oxygène respirable et, par là même, en ozone, écran protecteur contre les rayons ultraviolets, mortels à forte dose.
3. L’évolution de la vie

L’évolution est un mécanisme commencé il y a quelque 3,8 milliards d’années, et qui se répète dans chaque cellule. La plupart du temps, chacune donne naissance à une nouvelle cellule dotée de caractéristiques identiques à celles de la cellule mère. Mais parfois, des modifications se produisent (mutations). Au niveau des individus et des espèces, il apparaît parfois des modifications qui donnent lieu à de nouvelles adaptations au milieu, et sont à l’origine de nouvelles espèces. Les êtres vivants actuels ne sont pas identiques à ceux du passé et, pour reconstituer l’histoire de la vie, il n’existe pas d’arbre généalogique. Mais, les fossiles, vestiges de vie, témoignent tels des documents historiques. (→ ère géologique, paléontologie.)
4. Le déroulement de la vie

Toute cellule vivante, simple ou complexe, connaît en alternance deux formes d'assimilation : la croissance et la multiplication. Les êtres pluricellulaires présentent en outre une différenciation organisatrice entre leurs cellules, faisant apparaître tissus et organes. Au cours de la reproduction sexuée biparentale, les cellules sexuelles (gamètes) assurent la transmission des caractères spécifiques et leur brassage, tandis que le reste du corps est appelé à mourir et à réintroduire sa substance dans les grands cycles biosphériques.
Tant chez les plantes que chez les animaux, la vie commence sous la forme d'un embryon incapable de s'alimenter par lui-même, et qui vit sur des réserves (réserves de l’œuf ou de la graine) ou est nourri par l'individu-mère. La dépendance du jeune peut se poursuivre après l’éclosion (chez les oiseaux, espèces nidicoles, dont les oisillons reçoivent la becquée de l’un des deux parents, ou des deux, jusqu’à ce qu’il soit capable de s’envoler et de trouver sa nourriture tout seul). Chez les mammifères, les jeunes sont nourris par allaitement jusqu'au sevrage.
→ reproduction.
Le stade suivant, la croissance autonome, prend fin, en général, quand apparaît l'aptitude à la reproduction chez les animaux (maturité sexuelle). Il n'en va pas de même chez les végétaux vivaces, qui croissent jusqu'à leur mort.
5. Les conditions de la vie

→ biosphère, écosystème, biotope.
6. Les formes de la vie

→ êtres vivants.


   DOCUMENT   larousse.fr    LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Prcdente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google