ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

Définir la biologie de synthèse

 

Définir la biologie de synthèse : un premier enjeu de débat


La biologie de synthèse ambitionne de créer des fonctions et organismes nouveaux, qui n’existent pas dans la nature, dans un but de connaissances et d’applications. Ses promoteurs la présentent comme un champ nouveau de la biologie, avec une approche méthodologique mêlant la biologie et l’ingénierie des biotechnologies.
In EnglishPar Pascale Mollier MIS À JOUR LE 25/01/2016PUBLIÉ LE 10/10/2014 MOTS-CLÉS : BIOTECHNOLOGIE - GENOME - SOCIOLOGIE - SCIENCES SOCIALES - BIOLOGIE DE SYNTHÈSE
 ROBOT  de la plateforme de métagénomique quantitative (MetaQuant) de l'unité MICALIS. © Bertrand NICOLAS
© Bertrand NICOLAS
Pas de définition unique
Selon une définition consensuelle, la biologie de synthèse (ou biologie synthétique) vise à concevoir et construire de nouveaux systèmes biologiques, pourvus de fonctionnalités prédictibles et fiables, à des fins de recherche fondamentale et d’applications. Les objets construits peuvent être de simples molécules (enzymes), des circuits biologiques (« pompes, oscillateurs »), ou bien des organismes entiers (microorganismes spécialisés dans la production de composés considérés comme utiles, tels que biocarburants, médicaments, etc.). Au Canada, on emploie l’expression : ingénierie de la biologie. Mais il n’existe pas de définition unique. Selon une plaisanterie couramment citée d’un chercheur du MIT : « si on enferme six biologistes dans une pièce, ils donneront sept définitions de la biologie de synthèse ! ».
Science ou technologie ? Nouveau domaine ou prolongement de la génétique moléculaire ? Ces points font débat entre les biologistes et les ingénieurs, entre les biologistes eux-mêmes…
 Peu d’applications pour l’instant
Seules deux ou trois applications sont arrivées à maturité. Parmi elles, la production d’un médicament contre le paludisme, l’artémisinine. Cette molécule, présente dans l’armoise, une plante médicinale, est produite à grande échelle par une levure de boulanger dans laquelle ont été transférés les douze gènes  nécessaires à la synthèse de la molécule par la plante, une prouesse technologique... Autres applications : une version synthétique de l’hydrocortisone, synthétisée à partir d’alcool et de sucre.
Mais de nombreux travaux sont en cours, le potentiel d’applications revendiqué par les promoteurs de la biologie de synthèse est énorme. Par exemple, un outil de diagnostic basé sur un acide nucléique modifié pour suivre les patients atteints du Sida ou d’hépatite ; de la soie d’araignée pour l’aviation ou l’industrie automobile, la fabrication de biocarburants alternatifs (butanol, isobutène, biohuile) par des bactéries ou des algues microscopiques ; ou encore des bactéries capables de dégrader le pétrole laissé par les marées noires (1).
Progresser dans la connaissance du vivant
Si l’on pouvait programmer une cellule vivante comme on configure une carte électronique, on pourrait  lui faire produire les protéines souhaitées à la demande. Mais cette perspective est encore éloignée, même si la compréhension et la modélisation des systèmes vivants ont bien progressé depuis les années 2000 grâce à la montée en puissance des moyens numériques. Le défi consiste à comprendre les règles fondamentales qui gouvernent le fonctionnement dynamique d’une cellule dans son environnement. C’est l’objectif de ce que l’on appelle la biologie systémique ou intégrative.
La biologie de synthèse quant à elle s’appuie largement sur la modélisation pour construire de nouveaux systèmes biologiques selon deux approches principales. Une première approche, dite « Bottom up », consiste à assembler des « biobriques » (2) en circuits génétiques préalablement modélisés par ordinateur, puis à les insérer dans des « organismes châssis » capables de les faire fonctionner.  A l’inverse, la deuxième approche, dite « Top down », consiste à transformer des organismes vivants existants en leur ajoutant ou en leur enlevant des gènes (3).
Mais là encore, il ne suffit pas d’additionner des éléments comme dans un circuit électrique. C’est beaucoup plus complexe que cela du fait des multiples interactions qui existent entre les composantes d’une cellule vivante.
 
(1) Certaines bactéries ont naturellement ce potentiel, comme l’a montré un essai prometteur réalisé en 2010 dans le golfe du Mexique.
(2) Les biobriques sont des séquences d’ADN connues, dont les caractéristiques sont accessibles en accès libre dans le « Registry of Standard Biological Parts ». Ces biobriques sont destinées à être assemblées comme dans un jeu de lego, selon les initiateurs de cette méthode.
(3) Il existe aussi deux autres approches plus futuristes : (i) l’insertion de génomes artificiels dans des cellules elles-mêmes artificielles, appelées « protocellules ». Ces protocellules sont des nanobiosystèmes qui sont actuellement incapables de se reproduire ; (ii) la construction de systèmes vivants à partir de nouveaux codes génétiques.
L’INGÉNIERIE GÉNÉTIQUE NE DATE PAS D’HIER…
1912 : un médecin, Stéphane Leduc, soutient que la synthèse doit succéder à l’analyse pour valider les connaissances biologiques. Le concept est reformulé plus tard par le célèbre physicien Richard Feynman (1918-1988) : « Ce que je ne peux créer, je ne peux le connaitre ».
1965 : Robert Burns Woodward reçoit le prix Nobel pour la synthèse de molécules organiques : quinine, cholestérol, cortisone, chlorophylle,…
1970 : le biologiste indien Har Gobind Khorana synthétise l’ADN d’un ARN de transfert.
1984 : le laboratoire de Steven Benner, synthétise un gène codant pour une protéine.
2002 : le groupe d’Eckard Wimmer (Etat de New York) reconstitue le génome du virus de la polio (7741 pb) « from scratch », c’est-à-dire sans utiliser de matériel naturel, mais en partant seulement de la séquence publiée du génome ARN.
2004 : 1er congrès mondial de biologie de synthèse à Boston au MIT.
2005 : synthèse du génome du virus de la grippe espagnole (Tumpey et al. Science 310)
2010 : l’équipe de Craig Venter synthétise le génome d’une bactérie (1,08 millions de paires de bases) et le fait fonctionner dans une autre bactérie. Craig Venter a annoncé médiatiquement avoir « recréé la vie », jouant ainsi sur un registre ambigu fascination/peur. Cette interprétation est contestée par d’autres scientifiques, puisqu’il s’agit « seulement » de recopier un ADN existant dans une bactérie naturelle.
RUPTURE OU CONTINUITÉ ?
« La biologie de synthèse est née de la rencontre entre biologie moléculaire, informatique et sciences de l’ingénieur. Ni les ingénieurs, qui ont tardé à s’intéresser de près à l’ADN, ni les biologistes, qui ont négligé les outils d’ingénierie pour se concentrer sur l’accumulation de connaissances, n’ont pleinement réalisé la rupture technologique que leur rencontre allait provoquer.  […]
Voilà que les données déposées dans les banques publiques, les séquences d’ADN de centaines d’organismes, deviennent source d’inspiration pour une biologie devenant de synthèse, produisant des génomes librement inspirés de ceux existant dans la nature, et demain peut-être“from scratch”, sans équivalent naturel. Rétrospectivement, cette évolution semble logique, mais elle ne correspond pas à un projet consciemment formulé par la communauté scientifique, à une “feuille de route” connue de tous. [Elle interroge] la société sur la notion de “fuite en avant technologique”, sur l’attitude qu’il convient de développer lorsque la recherche engendre des forces qui entraînent la société dans des directions qu’elle n’a pas anticipées, ni a fortiori tracées. »
Extraits de l’Avis du Comité d’éthique pour la recherche agronomique, janvier 2014.
NOUVELLES APPROCHES D’INGÉNIERIE DES MICROORGANISMES POUR LA BIOLOGIE DE SYNTHÈSE
Exposé de Denis Pompon, LISBP Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Toulouse. Carrefour de l'innovation agronomique du 18 avril 2013 :

 

DOCUMENT       inra.fr     LIEN

 
 
 
 

LES GÈNES HOMÉOTIQUES ET L'ÉVOLUTION DES ANIMAUX

 

 

 

 

 

 

 

Texte de la 432e conférence de l'Université de tous les savoirs donnée le 11 juillet 2002

Guillaume Balavoine, « Le complexe Hox et l'évolution des animaux »

L'idée que les modifications que subissent les espèces au cours de l'évolution sont causées par des altérations du développement de l'embryon est apparue dès le XIXe siècle. Néanmoins, l'ignorance dans laquelle nous étions des mécanismes fondamentaux de l'embryogenèse, c'est-à-dire le développement progressif d'un animal juvénile composé de milliers de cellules, de tissus différenciés et d'organes complexes à partir d'une seule cellule, l'oeuf fécondé, a empêché jusqu'à une date récente toute avancée significative dans le domaine des mécanismes embryologiques de l'évolution. Cette situation a radicalement changé depuis une trentaine d'années. Des progrès considérables ont été faits dans la compréhension de la façon dont les gènes contrôlent le développement de l'embryon. Pour la première fois, des exemples convaincants du rôle possible de certains gènes dans l'évolution de la morphologie des animaux ont été proposés.

Au cours de mon exposé, je souhaite donner un aperçu historique de la relation entre embryologie et évolution. J'essaierai d'expliquer à quel point la découverte des gènes homéotiques et de leur conservation chez la plupart des animaux a été révolutionnaire pour la biologie du développement. Dans une troisième partie, j'expliquerai comment certains de ces gènes peuvent avoir été impliqué dans l'évolution du plan d'organisation des animaux.

Evolution, embryologie et génétique

La première synthèse de l'embryologie et de l'évolution est celle de Ernst Haeckel (1834-1919), le grand naturaliste allemand. Depuis longtemps, les naturalistes avaient constaté que des animaux très dissemblables au stade adulte comme les mammifères et les poissons peuvent avoir des embryons très comparables aux stades précoces (le fameux stade « pharyngula »). Des interprétations pré-évolutionnistes ont éte proposées par Serres et par Meckel, mais la synthèse la plus connue était celle de von Baer (1792-1876). Les lois de von Baer mettent en exergue que l'embryogenèse dans un groupe donné fait d'abord apparaître les caractères les plus généraux, puis les caractères spécifiques, suivant une séquence temporelle stricte. Von Baer, qui était "fixiste" (il ne croyait pas à l'évolution des formes vivantes) voyait donc les différents groupes d'animaux comme autant de lignées séparées, ayant en commun les caractères généraux apparaissant tout au début de l'embryogenèse, et se différenciant par des caractères apparaissant plus tardivement dans le développement.

Haeckel voyait au contraire dans l'ontogénie une image exacte de la façon dont les animaux ont évolué, une conception énoncée en français par le fameux aphorisme : « l'ontogenèse récapitule la phylogenèse ». Selon Haeckel, les caractères nouveaux acquis par les organismes adultes au cours de l'évolution sont originellement des additions terminales au processus de leur développement. Par la suite, d'autres caractères peuvent encore être ajoutés en séquence, mais les caractères acquis auparavant sont retenus dans l'embryogenèse en apparaissant plus tôt. L'embryogenèse récapitule donc les formes adultes des espèces ancestrales. Un exemple bien connu est celui des fentes pharyngiennes qui apparaissent transitoirement chez les embryons des mammifères et qui selon l'hypothèse d'Haeckel sont le vestige des fentes portant les branchies chez les ancêtres « poissons » des mammifères. Haeckel reconnaît des exceptions à cette règle pourtant, c'est-à-dire des caractères qui n'apparaissent pas dans l'ontogénie à un stade qui correspond à celui de leur acquisition au cours de la phylogenèse. Mais le grand oeuvre du biologiste évolutionniste doit justement consister à retrouver dans l'embryogenèse les indices véritables de l'histoire des êtres. En appliquant systématiquement ces principes à la reconstitution de cette histoire des êtres vivants, Ernst Haeckel fut le premier à dessiner les arbres généalogiques (ou « phylogénétique ») représentant leurs parentés.

Gradualisme darwinien contre mutationnisme

Haeckel était un partisan enthousiaste des idées de Charles Darwin (1809-1882). Darwin proposa en 1859 dans l'Origine des espèces une théorie révolutionnaire de l'évolution des formes vivantes par la sélection naturelle. Le fondement de cette théorie est qu'il existe à tout moment dans la population naturelle de n'importe quelle espèce des variations infimes de la forme et de la taille des organes. Ces variations apparemment insignifiantes ont néanmoins la caractéristique d'être héréditaires. Certaines de ces variations se révèlent désavantageuses pour la survie dans son milieu de l'individu qui les porte mais d'autres sont bénéfiques. Comme la reproduction produit bien plus d'individus qu'il n'en peut survivre (la fameuse "lutte pour la vie"), les individus porteurs d'une variation bénéfique sont plus susceptibles d'attendre l'age de la reproduction que les autres et vont plus que les autres transmettrent ces avantages à leur descendance, entraînant l'expansion de la variation au sein de la population de l'espèce. Comme pendant ce temps, de nouvelles variations apparaissent, de proche en proche, par l'accumulation sur de très longues périodes de temps (Darwin parlait de millions d'années) d'infimes variations, des modifications très substantielles de l'anatomie de l'espèce peuvent se produire. Darwin ne connaissait pas l'origine des variations héréditaires qu'il constatait dans les populations naturelles et il ne savait pas par quel mécanisme ces variations étaient transmises à la descendance.

On le voit, le développement ne joue pas un grand rôle dans la théorie de Darwin. Haeckel a donc essayé de concilier le darwinisme avec sa propre théorie d'évolution des formes vivantes par modification du développement. Haeckel avait ses propres idées sur la transmission héréditaire des variations, fondée sur ce qu'il est convenu d'appeler l'hérédité des caractères acquis, mais cette théorie s'effondra avec la découverte du gène.

Ironiquement, les gènes étaient découverts par un moine morave, Gregor Mendel (1822-1884), à l'époque même où Darwin faisait publier l'Origine des espèces. Mendel travaillait sur une plante, le petit pois, et sur de petites variations de pigmentation ou de texture des téguments des graines de cette plante. Ces variations étaient semblables à celles dont parlait Darwin dans l'Origine des espèces. Mais pendant plus de trente ans, les travaux de Mendel n'ont reçu aucun écho.

L'une des premières conséquences de la redécouverte du gène vers la fin du dix-neuvième siècle a été un rejet par les premiers généticiens de l'évolution « darwinienne » (c'est-à-dire du rôle prépondérant de la sélection naturelle dans l'apparition des caractères nouveaux) comme cause principale de l'évolution anatomique. L'un des ré-inventeurs de la génétique, le hollandais Hugo de Vries (1848-1935), distinguait deux sortes de variations dans les populations naturelles : les variations continues minimes sur lesquelles Darwin fondait sa théorie, mais qui ne pouvaient, selon de Vries, en aucun cas permettre l'évolution et les variations discontinues et brutales (qu'il appela des « mutations ») qui, seules, pouvaient produire de nouvelles espèces. Le rôle de la sélection était, sinon rejetée, du moins limitée à l'émondage des espèces par trop inadaptées. Pour de Vries, l'évolution procède donc par sauts, une mutation pouvant faire apparaître soudainement une nouvelle espèce.

Bateson et les transformations homéotiques

Parmi les tenants de cette école saltationniste, on trouve William Bateson (1861-1926), zoologiste anglais. Bateson était persuadé que les mécanismes évolutifs qui produisent de nouvelles espèces sont discontinus et interviennent par des variations anatomiques brutales. Dans Materials for the study of variation (1894), il fournit un recueil considérable d'exemples de ces variations discontinues. Certaines de ces variations se caractérisent par le fait qu'une certaine partie du corps d'un organisme prenait l'apparence d'une autre partie. Par exemple, chez les insectes, les antennes peuvent être remplacée par des pattes ; chez les crustacés, les yeux peuvent devenir des antennes ; chez diverses plantes, les pétales de la fleur peuvent prendre la forme d'étamines. Bateson fournit une longue liste de ce type de transformations parmi des groupes aussi variés que les vers annelés, les insectes et les mammifères. Il inventa le terme « homéose » pour désigner ces transformations. Bateson s'intéressa à l'origine de la variation et s'enthousiasma pour la théorie génétique de l'hérédité. Cette théorie lui semblait tout à fait confirmer ses idées quant à l'apparition soudaine de nouvelles espèces. Néanmoins, pendant les décennies qui suivent, ces idées ne font guère école. Les généticiens s'intéressent essentiellement à des modifications assez minimes de la morphologie pour expliquer l'évolution des caractères. Les « monstres » issus de mutations telles que les transformations homéotiques intervenant au cours du développement précoce les intéressent fort peu.

Les mutants homéotiques de la drosophile

Il faudra attendre Edward Lewis (né en 1918, prix Nobel 1995 de médecine), un généticien américain, pour que l'origine génétique des transformations homéotiques soient analysées en profondeur. Edward Lewis a travaillé toute sa vie sur les gènes homéotiques de la mouche fétiche des généticiens, la drosophile.

Le corps d'une mouche (tête, thorax et abdomen) est formé de segments d'anatomies différentes mais qui apparaissent identiques au début de leur développement. Sous l'effet d'une mutation d'un gène homéotique, un ou plusieurs segments vont au cours du développement prendre l'apparence d'autres segments. L'exemple le mieux connu est celui de la mutation bithorax. Les mouches porteuses de cette mutation ont deux paires d'ailes et semblent avoir deux thorax. Chez les mouches (diptères), le deuxième segment thoracique (T2) est très développé et porte une paire de pattes et une paire d'ailes alors que le troisième segment thoracique (T3) est de taille réduite et porte juste une paire de pattes mais pas d'ailes. Chez le mutant bithorax, T3 ressemble trait pour trait à T2, c'est-à-dire que la taille du segment est considérablement augmentée et qu'il porte des ailes (fig 1).

Edward Lewis a consacré une bonne partie de sa carrière à l'étude de ces gènes et dans une publication en 1978, il a contribué à démontrer deux aspects fondamentaux de leur structure et de leur fonction (fig 2) :

- les gènes homéotiques sont regroupés en deux complexes sur un chromosome de la mouche, le complexe Antennapedia qui compte cinq gènes contrôlant la forme des segments de la tête et du thorax, et le complexe Bithorax avec trois gènes s'occupant du thorax et de l'abdomen. Lewis en a déduit que les gènes homéotiques étaient des gènes apparentés apparus par des duplications successives dites « en tandem » d'un seul gène ancestral.

- Ces gènes régulent l'identité des segments de la mouche le long de l'axe antéro-postérieur suivant un ordre identique à celui dans lequel on les trouve sur le chromosome. C'est ce que l'on appelle la propriété de colinéarité.

Edward Lewis pensait à cette époque que les gènes homéotiques étaient une particularité des arthropodes (les animaux articulés) et qu'ils avaient joué un grand rôle dans leur évolution. On considérait à l'époque que les insectes avaient évolué à partir d'ancêtres chez lesquels tous les segments du tronc sont identiques, comme chez les milles-pattes actuels. Cette anatomie aurait été contrôlée par un gène homéotique ancestral unique. Puis d'autres gènes, ceux du complexe Bithorax seraient apparus par des duplications du gène ancestral. Mais ces nouveaux gènes auraient acquis une nouvelle fonction, celle de gènes « suppresseurs » de « pattes » L'apparition de ces gènes aurait donc provoqué l'apparition de l'abdomen sans patte et donc des insectes (fig 3).

Les années qui suivirent, qui virent l'application systématique des nouvelles techniques de biologie moléculaire à l'analyse des gènes des deux complexes donnèrent souvent raison aux idées visionnaires de Lewis sauf sur un point important : les gènes étaient beaucoup plus anciens qu'il ne le pensait.

L'homéodomaine ou la pierre de Rosette de la biologie du développement.

Dans les années 1980, plusieurs laboratoires ont élucidé la nature et la fonction moléculaire des gènes homéotiques. Les gènes sont des fragments d'ADN sur le chromosome composé d'un enchaînement spécifique de nucléotides (les quatre fameuses bases A,T,G,C). Ces enchaînements codent la structure d'une protéine, laquelle peut avoir diverses fonctions (protéines contractiles comme dans les cellules musculaires, enzymes du métabolisme, etc ...). Quand un gène, à un moment donné du développement et dans des cellules données, est effectivement « traduit » dans la protéine qu'il code, on dit que le gène s'« exprime ». Les gènes homéotiques codent pour des protéines régulatrices de l'expression d'autres gènes, c'est-à-dire que dans les cellules où le gène homéotique s'exprime, une protéine homéotique est produite qui va à son tour réguler positivement ou négativement l'expression de plusieurs autres gènes.

Les gènes homéotiques sont responsables de l'identité des segments de la drosophile au cours du développement, c'est-à-dire qu'ils vont aiguiller le développement des cellules de ces segments vers une direction spécifique. C'est pourquoi ces gènes ont été désignés sous l'appellation de gènes « sélecteurs» : ils fixent la destinée des cellules embryonnaires dans lesquelles ils sont exprimés, c'est-à-dire dans lesquelles la protéine qu'ils codent est produite. On peut grâce à des méthodes moléculaires sophistiquées mettre en évidence l'expression du gène dans des segments spécifiques (fig 4).

Le séquençage des gènes homéotiques fut effectué dans plusieurs laboratoires, notamment celui de Walter Gehring en Suisse et celui de Thomas Kaufman aux Etats-Unis. Comme Lewis l'avait prévu, les gènes homéotiques sont bien des gènes apparentés. Ils ont tous en commun un motif conservé, lequel code pour une partie de la protéine que l'on a appelé l'« homéodomaine ». C'est grâce à cet homéodomaine que les protéines homéotiques peuvent se fixer sur le chromosome à des endroits spécifiques et réguler d'autres gènes se trouvant à proximité, les gènes « effecteurs » qui vont réaliser la « forme » finale du segment en agissant sur la différenciation des cellules de ce segment.

Les études menées sur la drosophile ont donc révélé des concepts entièrement nouveaux pour la biologie du développement. Les gènes homéotiques ont été les premiers gènes « sélecteurs » étudiés en détail mais on sait aujourd'hui que beaucoup d'autres gènes de ce type (des centaines) existent sur les chromosomes et qu'ils régulent de multiples aspects du développement.

Très rapidement, on s'aperçut que des gènes codant pour des protéines à homéodomaine très proches des gènes homéotiques de la drosophile étaient présents chez la plupart des animaux, en particulier chez les vertébrés. On appelle ces gènes les gènes « Hox » de façon générale. La voie était ouverte pour une vaste entreprise d'identification de gènes par homologie qui conduisit à la découverte des complexes de gènes Hox chez l'homme et la souris. La « Pierre de Rosette » de la biologie du développement était découverte.

Des complexes homologues chez les insectes et les vertébrés.

Les deux complexes homéotiques de la drosophile ANT-C et BX-C sont le résultat d'une scission d'un complexe ancestral unique. Cette organisation ancestrale en un seul complexe a été trouvée chez d'autres insectes. Les vertébrés ont quatre complexes de gènes Hox qui résultent manifestement de duplications d'un complexe ancestral entier. Les quatre complexes sont situés sur des chromosomes différents. Ils sont alignables entre eux, chaque gène ayant en général un proche parent chez chacun des trois autres complexes, dont l'homéodomaine est quasiment identique.

La plupart des gènes Hox des vertébrés sont alignables avec les gènes des complexes de la drosophile, sur la base de la comparaison des homéodomaines et de la position du gène au sein du complexe (figure 3). Ceci démontre que ces gènes ont été hérités d'un ancêtre commun aux deux organismes, un animal qui vivait il y a au moins 550 millions d'années. Le complexe Hox lui-même devait donc exister chez cet animal. Il a été possible d'étudier la fonction des gènes Hox chez les mammifères en prenant comme modèle la souris où il est possible d'obtenir artificiellement des mutants de ces gènes. Quand on détruit l'un des gènes de la souris, on obtient des souriceaux présentant des malformations qui sont des transformations homéotiques de la colonne vertébrale ou des côtes, c'est-à-dire que certaines vertèbres ou certaines côtes prennent l'aspect de vertèbres ou de côtes plus antérieures ou plus postérieures. On a donc des effets très comparables à ceux observés sur les segments de la drosophile.

On avait donc à l'époque entre les mains un premier exemple de conservation à très grande échelle d'une structure chromosomique complexe. Que cette structure soit constituée de gènes fondamentaux pour le développement, responsables d'une partie importante du plan d'organisation de l'animal, comme cela a été établi rapidement chez les vertébrés aussi, était complètement inattendu. Rien ne laissait penser en effet que les plans d'organisation d'un mammifère et d'un insecte avaient quoi que ce soit de comparable, hormis quelques grands traits de base (axe antéro-postérieur, présence d'une tête, etc...).

La comparaison structurelle et fonctionnelle des gènes Hox des insectes et des mammifères établissait donc de façon certaine que leur dernier ancêtre commun avait déjà un complexe Hox élaboré, que ce complexe jouait déjà un rôle dans la régionalisation antéro-postérieure de l'embryon.

L'évolution du complexe Hox au sein des animaux.

La ressemblance des complexes de la souris et de la drosophile est remarquable. Il y a néanmoins des différences importantes. D'abord, les quatre complexes semblables des mammifères suggèrent que chez un de leur ancêtre, le complexe ancestral a été dupliqué plusieurs fois pour donner les quatre copies. Ensuite, les mammifères ont beaucoup plus de gènes « postérieurs » (exprimés dans la partie postérieure de l'embryon) que les insectes (jusqu'à cinq contre un seul). Ces différences suggèrent que des changements assez importants se sont produits pendant l'histoire du complexe Hox.

Ces constatations ont amené certains chercheurs à se demander quelles ont été les grandes étapes de l'évolution du complexe, à quelle moment de l'histoire de la vie ce complexe est apparu et si cette apparition est corrélée avec une étape importante de l'évolution des formes vivantes. Une « chasse » au gène Hox a donc été menée chez toute une série d'organismes. Très vite, il est apparu que l'histoire des gènes Hox serait propre aux animaux. En effet, aucun gène proche du type Hox n'a été découvert chez les plantes, chez les champignons ou chez les bactéries.

Pour comprendre l'histoire du complexe Hox au sein des animaux, il faut avoir une idée assez précise de la généalogie des animaux. A l'époque où les gènes Hox furent identifiés, dans les années 1980, d'importants progrès restaient à faire dans ce domaine. Depuis Haeckel, les hypothèses sur la forme de l'arbre généalogique des animaux, basées sur la comparaison de leurs caractères anatomiques et embryologiques avaient abondées. Mais des conflits importants subsistaient entre les évolutionnistes. L'ère de la biologie moléculaire apporta un renouveau considérable à ce domaine car il devint possible d'utiliser les gènes pour établir les relations de parenté entre les êtres vivants. La comparaison de la structure de gènes homologues (c'est-à-dire hérité d'un ancêtre commun) entre plusieurs organismes permet d'obtenir ces informations. Tous les gènes sont constitués d'un enchaînement précis des quatre acides nucléiques constitutifs de l'ADN (A, T, G et C). Lorsqu'une espèce donne naissance à deux lignées distinctes au cours de l'évolution, de petites différences vont commencer à s'accumuler entre les gènes initialement identiques de ces deux lignées. En général, ces différences consistent en de simples remplacements, appelés substitutions, d'un acide nucléique par un autre. En première approximation, ces substitutions s'accumulent régulièrement en fonction du temps écoulé. Le principe de base de ce que l'on appelle la « phylogénie moléculaire » est donc simple : plus les structures des gènes comparés sont proches (moins on trouve de substitutions), plus les organismes concernés doivent être apparentés.

L'utilisation systématique de ces techniques sur plusieurs types de gènes a permis de voir émerger au cours des années 1990 la forme générale de l'arbre des animaux (fig 5). A la base de l'arbre émergent les éponges, les animaux les plus simples. Les éponges n'ont pas à proprement parler de tissus différenciés. Tous les autres animaux se regroupent par le fait qu'ils ont des tissus et des organes différenciés. A la base de ce nouveau groupe des « animaux à tissus », on distingue une autre branche qui est celle des polypes (anémones de mer, coraux) et méduses. Ces animaux ont été reconnus très tôt comme relativement plus simples que les autres animaux à tissus, car ils n'ont fondamentalement que deux feuillets cellulaires (un externe et un interne), n'ont pas de système nerveux condensé et pas non plus d'axe antéro-postérieur avec une tête et un tronc clairement différenciés. Tous les autres animaux semblent être regroupés dans un troisième ensemble que l'on appelle les « bilatériens ». Ce terme se réfère au fait que ces animaux ont une symétrie bilatérale (c'est-à-dire un côté gauche et un côté droit identique) mais ils ont en commun de nombreuses autres particularités. Ils ont un axe antéro-postérieur très différencié avec une tête et un tronc, un tube digestif et un système nerveux condensé avec un « cerveau » et une chaine nerveuse. Les recherches les plus récentes ont montré que ces animaux complexes, les bilatériens se divisent eux-mêmes en trois grands groupes illustrés sur la figure 5 mais ceci dépasse notre propos.

La recherche de gènes Hox chez les éponges a toujours été négative. Chez les polypes et méduses, un petit nombre de gènes apparentés aux gènes Hox a été identifié et quelques indices qu'ils sont groupés en complexe ont pu être obtenus. Chez pratiquement tous les groupes de bilatériens considérés (vertébrés, oursins, insectes, vers annelés, mollusques, etc ...), un complexe Hox élaboré comptant entre huit et quatorze gènes a été découvert. On voit donc se dessiner un scénario assez clair de l'histoire du complexe Hox. Les premiers gènes Hox seraient apparus chez un ancêtre des animaux à tissus après la divergence des éponges. A l'époque où la branche des polypes et méduses s'est séparée, le complexe Hox n'auraient compté que quelques gènes (peut-être trois). Par contre de nombreuses duplications de gènes se seraient produites chez les ancêtres des bilatériens. On peut imaginer que les grandes étapes de ce scénario correspondent à des étapes de la complexification au plan d'organisation des animaux. En gros, l'acquisition d'un axe de symétrie très simple comme celui des polypes et méduses serait corrélé à la présence d'un petit complexe de trois gènes. Par contre, l'apparition d'une régionalisation antéro-postérieure poussée comme chez les bilatériens aurait nécessité la présence d'un complexe beaucoup plus élaboré d'au moins huit ou dix gènes.

On le voit, l'existence du complexe Hox est bien plus ancienne que ce que Lewis avait imaginé. La multiplication du nombre des gènes que Lewis envisageait chez les arthropodes s'est en fait produite bien avant, chez les ancêtres des bilatériens. Pourtant, les bilateriens ont évolué pour donner une diversité époustouflante d'animaux. Est-ce à dire que le complexe Hox n'a pas été impliqué dans cette diversification, jouant simplement un rôle conservateur d'agent de régionalisation de l'axe antéro-postérieur ?

Les gènes Hox sont-ils responsables de l'évolution anatomique ?

Deux exemples concrets chez les arthropodes

Nous avons vu que l'évolution de la structure du complexe s'est faite bien avant ce que pensait initialement Edward Lewis au cours de l'histoire des animaux. Pourtant, dans la suite de cet exposé, nous allons retourner vers le groupe de prédilection de Lewis et de nombreux évolutionnistes depuis, c'est-à-dire les arthropodes. Les arthropodes, comme nous l'avons vu sont tous constitués de segments, initialement identiques au cours du développement mais qui se différencient par la suite sous l'action des gènes Hox. En comparant l'organisation anatomique des principaux groupes d'arthropodes, on s'aperçoit que leurs plans anatomiques diffèrent considérablement non seulement par la forme des segments mais aussi par la façon dont ils se regroupent le long du corps de l'animal (fig 6). Chez les myriapodes, le groupe le plus simplement organisé, tous les segments portent des pattes et ont à peu près la même forme d'un bout à l'autre. Dans les autres groupes, ils se regroupent en un thorax et un abdomen mais de façon très différentes. Chez les arachnides (araignées et autres scorpions), le thorax portant les pattes est fusionné avec la tête, alors que les segments de l'abdomen ne portent pas de pattes. Chez les crustacés, tous les segments portent généralement des pattes mais celles du thorax sont souvent très différentes de celles de l'abdomen. Chez les insectes, le thorax ne comporte que trois segments et là encore les segments abdominaux ne portent pas de pattes. Les gènes Hox sont ils responsables de ces différences ? Des chercheurs de plusieurs laboratoires ont entrepris des études à la fois sur la structure et le fonctionnement du complexe Hox chez ces grands groupes d'arthropodes. Les résultats ont été surprenants. Globalement, la structure du complexe Hox est très remarquablement conservatrice chez tous les arthropodes. On retrouve les mêmes gènes que ceux que nous avons décrits chez la drosophile chez chacune des espèces d'arthropodes considérés. Contrairement à ce que proposait Lewis, ce n'est donc pas une variation dans le nombre des gènes Hox qui explique l'évolution de l'anatomie des arthropodes. Qu'en est-il de la façon dont ces gènes s'expriment ? Nous avons que les gènes Hox, gènes sélecteurs, influent sur la destinée des cellules dans lesquels ils sont exprimés sous la forme d'une protéine. De la même façon que chez la drosophile, les divers gènes Hox des arthropodes considérés s'expriment dans des groupes de segments contigus, généralement de façon chevauchante et en respectant la règle de colinéarité. La correspondance globale des domaines d'expression suggère des correspondances entre l'anatomie segmentée des différents groupes. Ainsi, si on en croit les gènes Hox (mais aussi l'anatomie comparée plus traditionnelle), les segments du thorax d'une araignée correspondent à ceux de la tête chez les autres arthropodes. Tout ce passe comme si au cours de l'évolution soit les arachnides ont commencé à marcher sur leur tête, soit au contraire (et peut-être plus vraisemblablement) les autres groupes ont intégré à leur tête la partie la plus antérieure de leur tronc dont les pattes sont devenus des pièces buccales destinées à la mastication. Néanmoins, en comparant les gènes correspondant dans différents groupes d'arthropodes, on observe des différences parfois considérables. Le gène pb, par exemple s'exprime dans la plus grande partie du céphalothorax des arachnides (c'est-à-dire cinq segments consécutifs) alors qu'il n'est exprimé que dans un seul segment de la tête chez une espèce de crustacé. L'extension postérieure de l'expression des gènes les plus antérieurs est également variable. Est-il possible que de telles différences expliquent les différents plans d'organisation des arthropodes ? Ceci semble peu probable car il est difficile de relier ces différences individuelles avec des particularités anatomiques constatées. Une difficulté supplémentaire est que nous ne disposons pas chez ces arthropodes des collections de mutants de la drosophile et donc pas de moyen de savoir quelles sont réellement les fonctions de ces gènes.

Pourtant, dans un certain nombre de cas, les chercheurs ont trouvé des indices plus probants.

Le premier exemple concerne les crustacés (crabes, crevettes, etc ...). Les chercheurs Michalis Averof et Nipam Patel (fig 7) ont comparé l'expression du gène Ubx chez diverses espèces de crustacés. Ces espèces diffèrent par la forme et la fonction des pattes les plus antérieures portées par le thorax. Chez certaines espèces, ces pattes sont effectivement des organes locomoteurs mais chez d'autres espèces, elles sont devenues des pièces buccales avec une fonction masticatrice. Chez les embryons des premières, le gène Ubx est exprimé dans toutes les pattes. Par contre, chez les embryons des secondes, les ébauches des pattes les plus antérieures, celles qui vont devenir des pièces buccales, n'ont pas d'expression du gène Ubx. Tout ce passe donc comme si le gène Ubx jouait un rôle dans le maintien de l'identité de patte locomotrice. Son « retrait » des pattes les plus antérieures était donc nécessaire pour leur permettre de devenir des pièces masticatrices. Pour autant, nous ne pouvons pas affirmer que c'est ce retrait de Ubx des pattes antérieures qui a causé la transformation au cours de l'évolution. Peut-être d'autres gènes sont-ils intervenus.

Un autre exemple concerne un aspect en apparence beaucoup plus discret de l'évolution morphologique mais là aussi le gène Ubx (encore lui ...) semble jouer un rôle certain. Cet exemple a été découvert par le chercheur David Stern, chez plusieurs espèces très apparentées de mouches drosophile. Les mouches ont de fins poils sur les pattes mais pas partout. Certaines zones de la patte en sont exemptes et David Stern a mis en évidence que les cellules de ces zones expriment le gène Ubx pendant leur développement. Certaines espèces de mouches ont une zone sans poils très étendue sur leurs pattes alors que chez d'autres, elle est beaucoup plus réduite. David Stern a montré que le gène Ubx est directement responsable de ces différences. Lorsqu'il introduit le gène d'une mouche"glabre « dans une mouche poilue » par un simple croisement (de la même façon que l'on croise un âne avec une jument pour obtenir un mulet), il obtient une extension de la zone sans poils.

Conclusion

Ces deux exemples nous ramènent à notre propos du début : l'évolution est-elle saltationniste ou gradualiste ? Le premier exemple, avec la transformation de plusieurs pattes de façon très importante semble suggérer la possibilité d'une évolution saltationniste. Pourtant rien dans cet exemple ne démontre que cette transformation s'est faite brutalement sous l'effet d'une ou d'un très petit nombre de mutations. Le deuxième exemple concernant un infime détail de l'anatomie d'une patte se rattache beaucoup plus au gradualisme darwinien. Le débat entre saltationnisme et gradualisme est aujourd'hui largement estompé. La plupart des biologistes acceptent l'idée que l'évolution se fait bien de façon graduelle par l'accumulation de petites différences comme le suggérait Darwin. Une partie de l'intérêt suscité par les gènes homéotiques provenait de l'idée que ces gènes étaient susceptibles d'engendrer une évolution par saut. Aujourd'hui, les chercheurs sont beaucoup plus prudents sur cette idée. Mais, ironie de l'histoire, c'est cet engouement pour les gènes homéotiques qui a permis de réaliser une percée décisive dans la compréhension des mécanismes génétiques du développement.

 

  DOCUMENT       canal-u.tv     LIEN 

(pour  consulter  la  vidéo, inscrire  le TITRE  dans  le  moteur  de  recherche  de  CANAL U )

 
 
 
 

LA NOTION D'ÉVOLUTION

 

 

 

 

 

 

Texte de la 429e conférence de l'Université de tous les savoirs, donnée le 7 juillet 2002

Hervé Le Guyader, "La notion d'évolution"



Pour présenter la notion d'évolution, j'ai choisi d'adopter une démarche historique, en singularisant différents points autour de périodes clés.

Premièrement, je présenterai quelques éléments importants des XVIIe et XVIIIe siècles qui permettent d'arriver à la conception d'un individu clé, Lamarck, date clé : 1829, publication de sa Philosophie zoologique. Le deuxième individu important est Darwin, date clé : 1859, publication de l' Origine des espèces. La troisième date clé se situe aux alentours de 1940, quand la Théorie synthétique de l'évolution est développée. Enfin, j'exposerai quelques éléments de l'après guerre, qui, à mon sens, montrent comment tout ce qui gravite autour des théories de l'évolution se met en place.

En introduction, j'attire votre attention sur cette citation d'Ernst Mayr qui compare les biologistes et les physiciens : « Au lieu de créer et de donner des lois comme le font les physiciens, les biologistes interprètent leurs données dans un cadre conceptuel »

Ce cadre conceptuel, c'est la notion d'évolution, qui se construit pas à pas, à force de discussions, controverses, voire même d'altercations, de progrès conceptuels ou expérimentaux.

Actuellement, ce cadre conceptuel devient extrêmement compliqué. Néanmoins, il s'en dégage quelques idées directrices.

I. L'apparition du transformisme

Je vous présente tout d'abord comment l'idée, non pas d'évolution, mais de transformisme, est apparue.

En premier lieu, je tiens à insister sur un point. En histoire, on montre souvent l'apparition de concepts « nouveaux » - sous entendu : avant, il n'existait rien. De plus, on attache souvent l'apparition d'un concept à un individu clé, considéré comme un génie. En réalité, ce génie, cet individu clé, ne représente la plupart du temps que le courant de l'époque, et ne fait « que » cristalliser une idée, qui existe néanmoins chez ses contemporains.

Pour que l'idée du transformisme apparaisse, deux mouvements se sont produits en même temps. La première avancée concerne la réfutation d'idées erronées. Ces idées, tant qu'elles n'étaient pas réfutées, empêchaient l'émergence de la notion de transformisme. Concomitamment, de nouveaux concepts apparaissent.

A. Les obstacles au transformisme

1. La métamorphose

Parmi les concepts erronés, celui de métamorphose est l'un des plus importants. Une planche extraite d'un livre d'Ulisse Aldrovandi (1522 - 1605) (fig.1), édité en 1606, illustre cette idée. Elle représente des crustacés, qui appartiennent à la classe des cirripèdes : des anatifes, crustacés fixés par un pédoncule, et dont le corps est contenu dans une sorte de coquille formée de plaques calcaires.

Cette planche montre comment on concevait le devenir de ces coquillages : selon Aldrovandi, les anatifes peuvent se transformer en canards ! Les cirres devenaient les plumes, le pédoncule, le cou, et la tête du canard correspond à l'endroit de fixation. J'aurais pu vous citer bien d'autres exemples de la sorte... D'ailleurs, ceux qui ont fait du latin reconnaîtront peut-être dans le terme actuel pour désigner une de ces espèces, Lepas anatifera, le terme anatifera qui signifie « qui porte des canards ».

Ainsi, dans les esprits d'alors, les animaux pouvaient se transformer les uns en les autres, un crustacé en canard, parmi une foultitude d'exemples. On concevait également des passages du monde végétal au monde animal... Tout était imaginable !

Dans ces conditions, il était impossible que l'idée d'un processus historique puisse apparaître. Ces exemples de métamorphose sont rencontrés jusqu'au milieu du XVIIIe siècle. Puis chacun des exemples de métamorphose est tour à tour réfuté. La notion-même devient progressivement la notion biologique actuelle - la métamorphose par mues des insectes et le passage têtard-adulte des batraciens.

2. La génération spontanée

La deuxième idée, la notion de génération spontanée, n'est pas caractéristique des XVIIe et XVIIIe siècles. Il faudra attendre Louis Pasteur (1822 - 1895) pour qu'elle soit complètement anéantie. En termes actuels, la notion de génération spontanée consiste en ce que de la « matière inanimée » puisse s'animer et produire des êtres vivants. L'abbé Lazzaro Spallanzani (1729-1799) est un homme clé parmi ceux qui ont démontré que la génération spontanée n'existe pas, du moins au niveau des organismes de grandes tailles : souris, insectes... etc. Cependant, il faudra attendre la controverse de 1862 entre Pasteur et Pouchet pour que cette notion disparaisse également au niveau des microorganismes. Retenons qu'au XVIIIe siècle cette notion ne persistera qu'à l'égard des « animalcules », les petits organismes.

3. L'Echelle des Êtres

La notion d'Echelle des Êtres existe déjà chez Aristote. Cette notion traverse tout le Moyen- Age, puis est remise en valeur par Gottfried Leibniz (1646-1716) et reprise par le biologiste Charles Bonnet (1720-1793).

La planche (fig 2) figure cette conception du monde : au bas de l'échelle, se situent les quatre éléments : feu, air, terre, eau. Des terres, on monte vers les cristaux et les métaux. Ensuite, on progresse vers le corail, les polypes, les champignons, jusqu'aux végétaux, insectes et coquillages. Certaines hiérarchies peuvent paraître étranges : les serpents d'abord, les poissons ensuite. Plus haut encore, les poissons, dominés par les poissons volants, qui conduisent aux oiseaux (!) ; puis des oiseaux, on parvient aux quadrupèdes et, qui se situe au sommet de l'échelle ? Bien naturellement : l'homme.

Ce concept était très ancré avant la Révolution. Un extrait d'un poème d'Ecouchard le Brun (1760) illustre comment les lettrés concevaient les relations entre êtres vivants :

« Tous les corps sont liés dans la chaîne de l'Être.

La nature partout se précède et se suit.

[...]

Dans un ordre constant ses pas développés

Ne s'emportant jamais à des bonds escarpés.

De l'homme aux animaux rapprochant la distance,

Voyez l'homme du Bois lier leur existence.

Du corail incertain, ni plante, ni minéral,

Revenez au Polype, insecte végétal. »

Tout était mêlé, avec une notion de progrès. Cette échelle des Êtres vivants est un concept qu'il a fallu discuter longuement, avant qu'il ne soit réfuté.

Cette notion d'Echelle des Êtres, il faut le souligner, est une notion quasi intuitive que tout individu développe. Il ne faut pas se focaliser sur son aspect historique ou archaïque. Chacun, de façon « naturelle », s'imagine être au sommet d'une Echelle des Êtres et conçoit une hiérarchie qui le lie à des subordonnés.

4. L'échelle de temps

Dernière conception à réfuter, la notion de temps. Avant la Révolution, l'échelle des temps reste une échelle biblique. Différents théologiens anglicans ont longuement calculé le temps qui les séparait de la création du monde, à partir des généalogies bibliques. Ils n'étaient pas tous d'accord, à une centaine d'années près, mais s'accordaient autour de 6 000 ans. Comment une idée d'évolution aurait-elle pu germer dans les esprits avec une marge de temps aussi courte ?

L'un de ceux qui réfutent cette idée, c'est Georges Buffon (1707-1788). Il propose une dizaine de milliers d'années, puis une centaine de milliers d'années. Enfin, dans sa correspondance, il émet l'idée que, peut être, la vie serait apparue il y a plusieurs millions d'années. C'est donc à cette époque que naît l'idée d'un temps long, en lien avec le développement de la géologie de l'époque.

B. Les nouvelles idées

A présent, quelles sont les nouvelles propositions ? Trois notions sont essentielles pour que les concepts de transformisme et d'évolution puissent apparaître.

1. L'unicité de la classification naturelle

Depuis Aristote au moins, les hommes ont voulu classer les organismes. Initialement, cette classification a principalement occupé les botanistes.

Aux XVe et XVIe siècles, on se retrouve avec une multitude de systèmes et de méthodes de classification. La bibliothèque du Muséum d'Histoire Naturelle en conserve une centaine dans ses vieux livres. S'il en reste tant actuellement, il en existait au minimum 500 à 600 en Europe, à cette époque.

Carl von Linné (1707-1778), comme les savants de cette époque, est un grand lecteur : il connaît toutes les tentatives réalisées par ses contemporains. Brusquement, il lui apparaît quelque chose d'assez extraordinaire. En effet, lorsque le travail de classification est mené correctement, en bonne logique, d'après de bons caractères, à chaque fois les grandes familles de la botanique ressortent : liliacées, orchidacées, rosacées... etc. Linné remarque que ces multiples tentatives conduisent à une même classification, un même ordonnancement. Tout se passe comme s'il existait une unité qui représente un ordre de la Nature. L'objectif est désormais de décrire cet ordre par une classification naturelle. Cette classification est nécessairement unique, car il n'y a qu'un ordre dans la Nature. Dans le contexte judéo-chrétien de l'époque, Linné imaginait que cette classification naturelle représentait l'ordre de la création.

Cette unicité de la classification est une idée extrêmement forte, comme on le verra avec Darwin. Elle change le sens de la classification - non plus seulement ranger les organismes, mais trouver une unité au monde du vivant.

2. Le concept d'homologie

Le concept d'homologie est mis au point par Etienne Geoffroy St Hilaire (1772-1844). Il utilise des travaux de botanique et bâtit un concept repris par Cuvier quasi en même temps : le concept de plan d'organisation. Cette idée de plan d'organisation, bien antérieure à Geoffroy St Hilaire, est fondamentale. Elle met en évidence que certains êtres vivants sont organisés de la même façon. Cuvier présente quatre plans d'organisation différents pour l'ensemble du règne animal - par exemple, le plan d'organisation des vertébrés.

A partir de ces plans d'organisation, Geoffroy St Hilaire construit un outil très performant pour l'anatomie comparée. Il crée, bien que ce ne soit pas le terme qu'il emploie, le concept d'homologie. Il affirme la nécessité, si on souhaite comparer les organismes, de savoir quels sont les "bons" organes que l'on compare : comment savoir si on compare les « mêmes » organes chez deux organismes différents ? Geoffroy Saint-Hilaire essaie, tout simplement, de trouver des organes qui occupent la même situation dans un plan d'organisation. Par exemple, en observant les membres antérieurs de vertébrés quadrupèdes (fig 3), on remarque qu'à chaque fois, le cubitus, entre autres, se trouve au même endroit dans le membre, même si la forme, la fonction de ce membre changent entre ces animaux.

Ce concept d'homologie permet de comparer de façon pertinente les organismes, ce qui est la condition pour proposer une bonne systématique.

3. La mort des espèces

En plus du concept d'homologie, George Cuvier (1769-1832) apporte une autre notion, qui a un impact considérable. Il démontre, par la paléontologie, que les espèces meurent. Grâce à des fossiles de vertébrés, en particulier ceux du gypse de Montmartre, il prouve qu'il existait des animaux qui n'existent plus actuellement dans le monde, c'est-à-dire que les espèces disparaissent.

Ce concept de mort des espèces a été une révolution extrêmement importante à l'époque, au tout début du XVIIIesiècle. Cet extrait de La peau de chagrin, de Balzac, illustre la portée de ce concept dans le monde des lettres :

« Cuvier n'est-il pas le plus grand poète de notre siècle. Notre immortel naturaliste a reconstruit des mondes avec des os blanchis. Il fouille une parcelle de gypse, y perçoit une empreinte et vous crie : « Voyez ! ». Soudain, les marbres s'animalisent, la mort se vivifie, le monde se déroule »

Brusquement, l'idée apparaît que des mondes, qui n'existent plus, existaient; le monde « se déroule » ; on verra qu'il « évolue ».

C. Lamarck et le transformisme

1. Logique et transformisme

Pour résumer, si vous réfutez les métamorphoses, si vous abandonnez le concept de génération spontanée, si vous allongez l'échelle de temps, si vous relativisez l'Echelle des Êtres, si vous imaginez une unité de classification, si vous concevez les concepts d'homologie et de plan d'organisation et si vous acceptez l'idée de mort des espèces, vous ne pouvez que suivre Jean-Baptiste Lamarck (1744-1829), puis proposer de conserver avec lui la notion de transformisme.

Pourquoi ? Très brièvement, si on suit un raisonnement logique, il ne reste que deux possibilités pour réunir ces idées. Soit on reste créationniste : il faut alors nécessairement imaginer des créations multiples. Or, cela ne figure pas dans la Bible, qui ne mentionne qu'une seule création. Soit, on opte pour une seconde possibilité : les espèces se transforment les unes en les autres. Une troisième possibilité a été retenue par quelques théologiens : le stock des espèces allait en s'amenuisant - ce qui, d'après eux, n'était pas important, puisque seul l'homme a une valeur. Cette dernière théorie a eu très peu d'impact.

2. La théorie de Lamarck

Lamarck présente une classification. Il a l'idée remarquable, même si elle a été réfutée plus tard, de séparer vertébrés et invertébrés. Au niveau des animaux, il construit ce qui reste une échelle des Êtres. Il classe les animaux en trois catégories : les animaux apathiques, les animaux sensibles, les animaux intelligents. Cette vision demeure hiérarchisée.

Il imagine une transformation des organismes les uns en les autres (fig 4). Un premier point est fondamental, novateur : Lamarck présente des bifurcations, c'est-à-dire qu'il construit un arbre, une arborescence. A ma connaissance, c'est la première représentation qui rompt ainsi la linéarité de l'échelle des Êtres. Deuxième innovation, les espèces sont reliées par des points (actuellement ce serait symbolisé par des flèches), qui désignent les transformations possibles : les vers en insectes, les poissons en reptiles ou en amphibiens. La limite de la vision de Lamarck se situe à la base de ce réseau de transformations : la génération spontanée alimente le stock des organismes les plus simples - les vers -. Pour expliquer ce schéma, on a utilisé l'image de l'escalier roulant, qui, avec ses arrêts, ses paliers, paraît particulièrement pertinente : elle montre que Lamarck n'a pas une vision historique. Par exemple, au niveau des oiseaux, certains viennent de prendre l'escalier roulant - ils viennent de se transformer -, tandis que d'autres sont là depuis longtemps. Cela signifie que les animaux semblables ne résultent pas d'une même transformation, qui serait survenue à une même date dans le cours de l'histoire.

Il faut retenir, dans la pensée de Lamarck, cette notion de transformation, d'arbre, nourri continuellement par la génération spontanée.

II. Darwin

Sans entrer dans les détails de la vie de Charles Darwin (1809-1882), un élément important pour le développement de sa vision scientifique et pour l'élaboration de l' Origine des espèces (1859) réside dans un tour du monde de presque cinq ans, effectué entre 1831 et 1836. Non seulement Darwin est un très bon naturaliste et un très bon géologue, mais il possède également des notions d'anatomie et d'embryologie comparées.

A. La théorie de L'Origine des Espèces

Pour illustrer la difficulté de recevabilité que rencontra le livre de Darwin à sa publication, voilà le sous- titre donné dans la traduction française. Le titre original anglais est "Origin of species - by means of natural selection" , qui se traduit par : « L'origine des espèces - par les moyens de la sélection naturelle ». Or, dans l'édition française de 1862, ce titre est « traduit » de manière erronée en : « De l'origine des espèces ou des lois du progrès chez les êtres organisés ». Ce sous-titre montre combien la notion de progrès - et d"échelle des espèces" implicite - était profondément ancrée.

La meilleure solution pour exprimer l'idée clé de L'Origine des espèces, c'est d'examiner un extrait qui traduit de manière essentielle le sens que donne Darwin à la notion de classification :

«Le système naturel, c'est-à-dire la classification naturelle, est fondé sur le concept de descendance avec modification... »

Ce concept de «descendance avec modification » est essentiel pour comprendre la pensée de Darwin. Pourtant, si on interroge quelqu'un sur ce qu'a apporté Darwin, il répondra sans doute « la sélection naturelle "». En réalité, il a proposé ces deux idées, liées : sélection naturelle et descendance avec modification. A mon sens, c'est cette dernière idée qui est la plus importante.

« ... sur le concept de descendance avec modification, c'est-à-dire que les caractères que les naturalistes décrivent comme montrant de réelles affinités entre deux ou plusieurs espèces sont ceux qui ont été hérités d'un parent commun. »

Ces caractères auxquels Darwin fait référence, ce sont les caractères homologues de Geoffroy St Hilaire. Ce que propose Darwin, c'est une réponse à la question : pourquoi ces caractères sont-ils homologues ? Parce qu'ils ont été hérités d'un parent commun. Darwin interprète la notion de ressemblance, très prégnante depuis Geoffroy St Hilaire, comme une notion d'héritage de caractères. Il ne remet pas en cause le travail de ces prédécesseurs : il lui donne « seulement » un autre sens.

« Et par conséquent, toute vraie classification est généalogique... »

Enfin, Darwin plonge ce travail dans un continuum temporel. Cette notion de généalogie bouleverse le sens des classifications : désormais, on recherche des relations de parenté :

« ... c'est-à-dire que la communauté de descendance est le lien caché que les naturalistes ont cherché inconsciemment et non quelque plan inconnu de création. »

A l'époque, cette dernière phrase a représenté une provocation extraordinaire !

Pour éclairer le propos de Darwin, voilà la seule illustration présente dans L'Origine des Espèces (fig 5). Premièrement, cette planche dévoile une vision historique : les lignes horizontales représentent des horizons temporels. Cette figure comprend trois concepts importants :

1) des espèces disparaissent - l'idée de Cuvier ;

2) au cours du temps, les espèces peuvent se transformer - l'idée de Lamarck ;

3) des espèces peuvent donner naissance à plusieurs autres espèces.

Si on considère deux espèces après un embranchement, Darwin considère qu'il faut les rapprocher parce qu'elles partagent un ancêtre commun. Or les espèces partagent toujours un ancêtre commun. La différence réside dans la plus ou moins grande proximité de ces ancêtres. Pour Darwin, les organismes se ressemblent beaucoup car ils partagent un ancêtre commun récent. Les organismes très différents partagent un ancêtre commun lointain, à partir duquel il y a eu énormément de temps pour diverger.

B. La première « généalogie » des organismes

Ces concepts proposés par Darwin sont immédiatement repris par un biologiste allemand, Ernst Haeckel (1834 - 1919). Haeckel poursuit ces idées, en les exagérant même un peu.

Il utilise un arbre pour représenter sa classification. Il propose trois règnes : aux deux règnes animal et végétal classiques, il ajoute les protistes (organismes unicellulaires). Son apport fondamental se situe à la base de l'arbre. Pour chacun des règnes, il situe un ancêtre commun hypothétique, et surtout, il met en place un tronc avec une seule racine commune à l'ensemble des êtres vivants-un ancêtre commun à l'ensemble des organismes.

Cette proposition, en 1866, est le premier arbre dit « phylogénétique »- terme créé par Haeckel. Bien que discutée à ses débuts, l'idée essentielle d'origine commune est conservée - elle contient également l'idée d'origine de la vie sur terre -. Le mouvement est lancé : depuis Haeckel, les chercheurs vont « se contenter » de corriger cet arbre. Seules les logiques pour inférer les relations de parenté sont modifiées et améliorées.

C. Les difficultés de Darwin

Il manque des éléments à Darwin pour expliquer les mécanismes soutenant ce double concept de descendance avec modification. Elle contient premièrement l'idée de descendance entre espèces. Darwin n'utilise pas d'échelle des temps. Entre les lignes horizontales de son schéma, il ne s'agit pas d'années, ni de millions d'années : il s'agit de nombres de générations. Selon Darwin, ce qui rythme la vie des organismes, c'est la reproduction sexuée, à l'origine du concept de descendance. Deuxièmement, Darwin suppose que les caractères héréditaires, transmis via la reproduction sexuée, se « transforment »- mais il ignore comment.

Les deux disciplines qui lui manquent sont d'une part la génétique, et d'autre part, l'embryologie.

III. La Théorie synthétique de l'évolution

A. Les bases de la théorie

Un événement scientifique se produit au début du XXe siècle : la redécouverte des lois de Gregor Mendel (1822 - 1884), indépendamment par trois chercheurs : le hollandais Hugo De Vries (1848 - 1935), l'allemand Carl Correns (1864 - 1933), et l'autrichien Erich von Tschermak (1871 - 1962). Redécouverte, certes, mais enrichie d'un nouveau concept essentiel, celui de mutation. Cette idée de mutation permet de concevoir comment les caractères sont à la fois héréditaires et changeants.

A partir de 1905 jusqu'à 1930, se produit un difficile rapprochement entre deux disciplines : la génétique dite « des populations » (l'étude du devenir des fréquences de gènes dans les populations au cours du temps), se rapproche du darwinisme, par l'intermédiaire de la sélection naturelle. Ce rapprochement conduit à la Théorie synthétique de l'évolution. Signalons que cette traduction mot à mot de l'anglais introduit une connotation étrange en français - c'est plutôt une théorie qui fait une synthèse -.

Cinq biologistes de renom participent à cette nouvelle vision de l'évolution. Le premier individu clé est Theodosius Dobzhansky (1900 - 1975), d'origine russe, immigré aux États-Unis. Comme quasi tous les autres protagonistes de cette théorie, il appartient à l'Université de Columbia, à New York. Dobzhansky publie en 1937 un ouvrage intitulé : Genetics and Origin of Species. Cette référence explicite à Darwin traduit bien sa volonté de démontrer, par la génétique, que Darwin avait raison.

Les autres chercheurs impliqués dans cette vision nouvelle sont :

- Julian S. Huxley (1887-1975), généticien ;

- Ernst Mayr, zoologiste, ornithologue, théoricien de la spéciation ;

- George G. Simpson (1902-1984), géologue et paléontologue ;

- Ledyard G. Stebbins, qui travaille sur la spéciation en biologie végétale.

J'ai repris à partir d'un article récent d'Ernst Mayr les principes de base de cette théorie :

Premier principe : l'hérédité est particulaire et d'origine exclusivement génétique. Cela signifie que l'hérédité est portée par des particules-les gènes-qui ne se mélangent pas. En insistant sur l'origine exclusivement génétique, ce principe nie l'idée d'hérédité des caractères acquis, une forme de lamarckisme en vogue à l'époque.

Second principe : il existe une énorme variabilité dans les populations naturelles. Les organismes présentent une grande variabilité des différents gènes, des différents caractères. Cette variabilité intraspécifique permet l'apparition de nouvelles espèces à partir d'une espèce donnée.

Troisième principe : l'évolution se déroule dans des populations distribuées géographiquement. Un des moteurs les plus importants de la spéciation est l'isolement reproducteur. Les populations peuvent se retrouver séparées par des barrières géographiques, de comportement... etc. A partir du moment où une barrière de reproduction apparaît, des populations isolées peuvent donner naissance à des espèces distinctes.

Quatrième principe : l'évolution procède par modification graduelle des populations. L'évolution se fait pas à pas suivant un gradualisme quasi linéaire en fonction du temps. Autrement dit, le taux d'évolution est toujours considéré comme à peu près constant par unité de temps.

Cinquième principe : les changements dans les populations sont le résultat de la sélection naturelle. Les changements de fréquence des gènes et de caractères dans les populations sont provoqués par la sélection naturelle. Cette idée sera remise en question plus tard : la sélection naturelle existe, certes, mais d'autres moteurs de changement seront avancés.

Dernier principe : la macro-évolution n'est que le prolongement dans le temps de ces processus. La macro-évolution désigne les changements importants, les grands bouleversements, en particulier au niveau des animaux - changements de plans d'organisation, etc. Cette macro-évolution n'est considérée ici que comme le prolongement de la micro-évolution - les changements graduels. La macro-évolution n'est que le résultat de petits changements accumulés pendant des dizaines ou des centaines de millions d'années.

La théorie synthétique de l'évolution contredit la notion fondamentale de finalité : elle affirme que l'évolution ne poursuit aucun but. Tout se passe pas à pas, dans un affrontement continuel, au présent, des organismes avec leur environnement, et les uns par rapport aux autres, et non en fonction d'un but précis.

B. La rupture de la cladistique

Cette théorie synthétique de l'évolution a été un nouveau point de départ. Dans les années 1950, plusieurs aspects sont discutés pour parvenir à la vision actuelle.

Premier point clé : cette nouvelle vision modifie la manière de traiter les fossiles en particulier, et l'histoire de la vie sur Terre, en général. Deux éléments illustrent cette notion. Le premier est révélé par un schéma de Simpson, qui, représente par une arborescence les différentes classes de vertébrés, les mammifères, les oiseaux, les reptiles et les poissons. Malgré Darwin, cet arbre traduit, non pas une recherche de parenté, mais de descendance, de généalogie. Par exemple, l' Ichthyostega est placé de telle sorte qu'on puisse penser qu'il est l'ancêtre de l'ensemble des organismes qui le suivent.

Cette représentation illustre un problème clé : comment retracer les relations de parenté ? Comment se servir des fossiles ? A ces questions, le zoologiste allemand Willy Hennig (1913-1976) propose une nouvelle méthode : la cladistique.

Hennig pense qu'il faut rechercher, non pas des relations de descendance, mais de parenté-les relations de cousinage, en quelque sorte-, et positionner des ancêtres hypothétiques. Pour mettre à jour ces relations de parenté, il faut, parmi les caractères homologues (hérités d'un ancêtre commun), considérer ceux qui correspondent à des innovations. Ces caractères novateurs permettent de rassembler les organismes.

En considérant ces organismes (fig 6), des oiseaux et des reptiles (tortues, lézards et crocodiles), une des innovations héritées d'un ancêtre commun hypothétique est la plume, partagée par l'ensemble des oiseaux. La plume résulte de la transformation de l'écaille épidermique existant chez les organismes reptiliens, à la suite d'un processus évolutif particulier.

Cette démarche, fondée non pas sur un mais plusieurs caractères, permet de construire des arbres phylogénétiques. La méthode consiste à définir des groupes monophylétiques, pas à pas, à partir d'ancêtres hypothétiques communs. Un groupe monophylétique est un groupe qui rassemble un ancêtre et l'ensemble de ses descendants. A l'opposé, un groupe paraphylétique correspond à un ancêtre et une partie de ses descendants.

Pour éclairer ces concepts, considérons cet arbre, relativement juste - relativement car encore sujet de controverse. Cet arbre met évidence un groupe monophylétique, les sauropsides, groupant les oiseaux, les crocodiles, les lézards, les serpents et les tortues. Or, dans la classification "traditionnelle", les reptiles (serpents, lézards, tortues) figurent d'un côté, les oiseaux de l'autre. Cela revient à présenter un groupe monophylétique (les oiseaux) et un groupe paraphylétique (les serpents, les oiseaux et les tortues). Cette dichotomie se fonde sur un ensemble de particularités des oiseaux qui les mettaient, intuitivement, "à part" : la capacité de voler, le plumage... Dans ce cas-là, on occulte la relation de parenté extrêmement importante entre les crocodiles et les oiseaux. Dans le cas contraire, on explicite un groupe monophylétique clé : les archosauriens (crocodiles et oiseaux), ce qui modifie la conception évolutive intuitive.

On aurait "naturellement" tendance à penser que les crocodiles ressemblent plus aux varans ou aux lézards qu'aux oiseaux. Cette méthode met en pièce le concept de ressemblance - en trouvant des caractères (moléculaires ou morpho-anatomiques) qui permettent de positionner des ancêtres hypothétiques communs qui ont apporté des innovations. Dans ce cas particulier, l'innovation est la présence d'un gésier. Ce gésier, connu chez les oiseaux, moins chez les crocodiles, n'est pas présent chez les autres reptiles.

Examinons à présent cet arbre (fig 7), qui représente les archosaures. Deux groupes d'animaux vivent actuellement : les oiseaux et les crocodiliens (ici l'alligator), aux deux extrémités du graphe. D'autres branches sont importantes :

- la branche des ptérosauriens - les « dinosaures » volants ;

- le groupe des dinosaures, divisés en deux branches : ornitischiens et saurischiens ;

- les théropodes.

Contrairement à la figure précédente (fig 6), les fossiles ne figurent pas en tant qu'ancêtres. Ils sont représentés comme apparentés aux autres organismes. Des ancêtres hypothétiques communs sont positionnés. A leur niveau, on fait apparaître les innovations. De cette manière, l'histoire de ces innovations est retracée : à partir d'organismes de "type" dinosaure, on voit l'évolution des différents caractères (tels que la plume, l'évolution des membres, mâchoires...etc.), jusqu'aux oiseaux actuels.

Parmi ces archosaures, seuls existent encore les crocodiles et les oiseaux. Entre ces deux groupes se trouvent tous les dinosaures. Les oiseaux partagent des ancêtres hypothétiques avec quantité de ces dinosaures. On croit que les dinosaures ont disparu. Et bien non ! Quand vous croiserez une volée de pigeons dans les rues de Paris, vous pourrez dire : "nous sommes envahis par les dinosaures !" Tous les oiseaux sont des dinosaures : cette méthode change considérablement la vision intuitive des choses, n'est ce pas ?

Je conclus cet exposé en présentant ce à quoi vous avez échappé :

- Tout d'abord, à la phylogénie moléculaire. Actuellement, tous les organismes de la diversité du vivant peuvent apparaître sur un même arbre : bactérie, animaux, plantes... Cet arbre commence à représenter une bonne vision synthétique du monde vivant.

- Ensuite, à l'évolution du génome. On commence à comprendre comment les innovations, les mutations surviennent au niveau du génome. Elles se produisent principalement par duplication des gènes : des motifs de l'ADN se dupliquent et ces gènes dupliqués peuvent acquérir de nouvelles fonctions. La mise en évidence de ces phénomènes permet de mieux comprendre comment la descendance avec modification se produit. Ce ne sont pas de petites modifications ponctuelles comme on le pensait auparavant.

- Troisième point : la sélection n'agit pas exclusivement au niveau des organismes. Elle opère à tous les niveaux d'organisation. Un exemple très simple est la présence, dans les génomes, de petites unités appelées transposons. Ces transposons se répliquent, indépendamment, envahissent le génome, peuvent passer d'un chromosome à l'autre. Ces transposons participent certainement à la fluidité du génome. Le pourcentage de ces transposons dans le génome est considérable : 40 % du génome humain est composé de ces séquences - des unités « parasites "» puisqu'elles ne participent ni à la construction, ni au fonctionnement de notre organisme. Au niveau végétal, ce chiffre est encore plus important : jusqu'à 75 % du génome de certaines plantes serait envahi de transposons.

- Avant dernier point : l'évolution n'est pas si graduelle, elle se fait souvent par crises. La vitesse d'évolution change. Des crises se sont produites, extrêmement importantes dans l'histoire géologique de la Terre. L'une des plus belles crises est celle du Permien, au cours de laquelle 80 % des espèces auraient disparu. Ces crises d'extinctions ont été suivies de radiations, où des innovations très importantes se produisent.

- Enfin, dernier point qui m'est cher. La notion de progrès devient complètement relative. Les innovations se font sur toutes les branches : il n'existe pas d'organisme plus évolué qu'un autre. Tous les organismes ont parcouru le même temps d'évolution. Seulement, ils n'ont pas évolué dans les mêmes directions, en raison de contraintes différentes, de milieu et de choix de stratégies différentes.

Si on prétend dans un style « d'Echelle des Êtres », qu'il existe de « meilleurs » organismes, c'est qu'on met en exergue un ou plusieurs caractères. Ce n'est pas de la biologie. La biologie considère tous les caractères au même niveau et que la biodiversité est structurée par cette évolution. Dans ces conditions, chaque organisme vaut par lui-même.

 

  DOCUMENT       canal-u.tv     LIEN

(pour  consulter  la  vidéo, inscrire  le TITRE  dans  le  moteur  de  recherche  de  CANAL U )

 
 
 
 

LES HORMONES

 

Les hormones
Ursula Lenseele, Olivier Bosler, Yves Combarnous,Nadine Imbault dans mensuel 357


Chefs d'orchestre du monde vivant, les hormones ? Très courantes chez les végétaux et présentes dans presque tout le règne animal, elles sont incontournables chez les animaux à sang chaud. Aucune des grandes fonctions physiologiques ne leur échappe : même ce grand ordonnateur qu'est le cerveau se trouverait, sans elles, bien dépourvu.
Qu'est-ce qu'une hormone ?
C'est à la fin du XIXe siècle que le biologiste Claude Bernard commence à travailler sur les sécrétions internes et que le physiologiste Charles-Edouard Brown propose une première définition de celles qu'on n'appelle pas encore hormones : « Principe sécrété par un groupe de cellules agissant à distance sur un autre groupe de cellules avec différents effets. » Le terme hormone du grec « j'excite » fait son apparition en 1905. En 1909, c'est au tour de l'endocrinologie, « la science des sécrétions internes », de voir le jour.

Chez l'homme, il existe de nombreux types structuraux d'hormones : des stéroïdes, solubles dans les graisses et qui traversent donc facilement les membranes biologiques, des peptides et des protéines insolubles dans les graisses insuline, hormone de croissance..., et des dérivés d'un acide aminé, telles l'adrénaline ou la mélatonine. Le monoxyde d'azote, lui, se distingue en tant qu'hormone gazeuse. Certaines hormones sont produites par des cellules spécialisées rassemblées en glandes hypophyse, thyroïde, glande surrénale..., d'autres par des cellules endocrines plus ou moins dispersées dans divers organes ovaires, testicules..., d'autres enfin par des cellules qui ne sont pas seulement endocrines. Les hormones sont impliquées dans la régulation de toutes les grandes fonctions physiologiques : le métabolisme énergétique, l'équilibre du milieu intérieur, la nutrition, la reproduction, le développement et la croissance, sans oublier la maturation du système nerveux.

Elles sont répandues dans tout le règne animal, tant chez les vertébrés que chez les invertébrés. Chez ces derniers, ce sont souvent des sécrétions du système nerveux. Ainsi l'hydre possède-t-elle, à la base de ses tentacules, des cellules nerveuses qui synthétisent une neurohormone impliquée dans la croissance, la régénération et la reproduction de l'animal. Certains mollusques - les céphalopodes, par exemple - ont des systèmes plus élaborés : de véritables glandes endocrines, comme la glande optique. Les crustacés, quant à eux, possèdent un système endocrinien complexe, tout comme les insectes, chez qui les hormones exercent des effets sur la croissance et les métamorphoses ou sur le maintien dans l'hémolymphe* de concentrations appropriées en métabolites.

Les végétaux ont-ils aussi des hormones ?
Oui. Les hormones végétales ont été découvertes au début du XXe siècle. La première à avoir été cristallisée, en 1934, est l'auxine. Mais dès 1880, lors d'expériences sur le phototropisme, Charles Darwin avait mis en évidence l'existence dans les végétaux d'une substance capable de diffuser. Cinq grandes classes d'hormones végétales ont par la suite été définies : les auxines, les cytokinines, les gibbérellines, l'acide abcissique et l'éthylène gazeux. Depuis, d'autres molécules impliquées dans la morphogenèse végétale ont été découvertes. Là où les hormones animales sont véhiculées par le sang ou l'hémolymphe, les hormones végétales circulent dans les vaisseaux xylème et phloème qui transportent la sève. Elles sont aussi, parfois, prises en charge par d'autres systèmes de transport.

Les auxines, cytokinines et gibbérellines interviennent principalement dans la régulation du métabolisme de la plante et de sa croissance, la stimulation de la différenciation tissulaire, la détermination de la floraison et la maturation des fruits. L'acide abscissique, lui, fut initialement considéré comme un inhibiteur impliqué dans la dormance des bourgeons. Mais on sait maintenant que, à l'intar des autres régulateurs de croissance, il joue des rôles multiples durant le cycle de développement de la plante. Quant à l'éthylène, c'est l'hormone de la maturation du fruit qui le synthétise, mais aussi des fruits voisins. C'est pourquoi « un fruit pourri gâte tout le panier ». L'éthylène agit aussi durant les périodes de croissance, de floraison et de chute des feuilles. Il existe, par ailleurs, des phytohormones qui jouent un rôle dans la défense des plantes en cas d'agression par des insectes prédateurs ou d'attaque par des pathogènes : la traumatine et l'acide jasmonique.

Comment les hormones agissent-elles ?
Chez l'animal, les hormones se lient à un récepteur protéique spécifique situé soit dans la membrane de la cellule cible, soit dans le cytoplasme ou le noyau de ladite cellule. Leurs effets sont à court ou à long terme. Celles qui se lient à des récepteurs membranaires par exemple l'adrénaline et les hormones peptidiques et protéiques agissent plutôt sur un mode aigu. Celles reconnaissant des récepteurs nucléaires ont une action plus prolongée, directement au niveau de l'expression des gènes - c'est le cas des hormones stéroïdes comme la progestérone, l'oestradiol ou le cortisol. La quantité d'hormone synthétisée est finement régulée, soumise à des boucles de contrôle positif ou négatif qui permettent d'adapter la production aux besoins. Cette régulation se fait soit par le biais de l'hormone elle-même - on parle alors de rétrocontrôle -, soit par le biais d'une autre hormone. Elle implique parfois le système nerveux.

On sait moins de choses du mode d'action des hormones végétales. Leur étude est rendue difficile par le fait qu'elles agissent à des quantités infimes et de façon moins spécifique que les hormones animales. En effet, chacune peut intervenir sur plusieurs mécanismes physiologiques et, inversement, un même processus physiologique peut être modulé par des hormones différentes. Par ailleurs, elles peuvent interagir physiologiquement. Si l'on pense qu'un grand nombre d'entre elles agissent par le biais de récepteurs membranaires, l'existence de ces récepteurs n'a été prouvée que dans peu de cas. Quant aux boucles de rétrocontrôle, on ne sait pas si elles existent.

La sécrétion hormonale suit-elle des rythmes ?
Cela dépend. La plupart des hormones sont sécrétées selon un rythme circadien. L'hormone de croissance, par exemple, est produite principalement la nuit, tandis que le cortisol, qui prépare l'organisme à affronter les contraintes de l'environnement, est libéré massivement au réveil. D'autres sont sécrétées selon un rythme cyclique lié à la répétition d'un mécanisme biologique donné - le cycle ovulatoire féminin, par exemple. La sécrétion d'une hormone donnée peut également répondre à un stimulus physiologique précis. Ainsi l'insuline est-elle libérée après le repas, lorsque la quantité de sucre sanguin augmente. De même une situation stressante et le fait de passer à l'action provoquent-ils une augmentation du taux d'adrénaline qui stimule le rythme cardiaque. A l'extrême, certaines hormones ne sont sécrétées qu'une fois dans la vie d'un individu. C'est le cas de l'ecdysone, hormone de la métamorphose de la chenille en papillon ou de la thyroxine qui permet la transformation du têtard en grenouille.

Si les phénomènes de sécrétion hormonale sont soumis à des rythmes, ils en génèrent également. La mélatonine, dont la sécrétion est strictement nocturne, joue un rôle particulièrement important dans l'adaptation de l'individu à son environnement. Cette hormone véhicule un double message. D'une part, elle contribue à la synchronisation des rythmes biologiques par une interaction avec l'horloge interne des individus. D'autre part, elle régule le déclenchement des fonctions saisonnières en informant l'organisme des variations de la longueur du jour : c'est l'hormone « donneuse de temps ». Elle joue ainsi un rôle important chez les espèces dont la reproduction, saisonnière, est influencée par la lumière : la sécrétion de leurs hormones sexuelles est conditionnée par le taux de mélatonine. Chez les moutons, par exemple, le taux des hormones sexuelles augmente avec le taux de mélatonine, lorsque les nuits rallongent. L'activité sexuelle est déclenchée à l'automne et la naissance des agneaux a lieu cinq mois et demi plus tard, au printemps. Inversement, chez les chevaux, c'est la diminution printanière du taux de mélatonine, lorsque les jours rallongent, qui stimule la sécrétion des hormones sexuelles. Les poulains naissent onze mois plus tard, au printemps également, période la plus favorable.

Hormones et cerveau : qui commande ?
Ni l'un ni l'autre. Système nerveux et système hormonal vont coopérer tout au cours de la vie, et même partager certaines molécules.

Ces dernières années, en effet, la distinction entre neurotransmetteurs et hormones s'est faite de plus en plus floue. Classiquement, un neurotransmetteur est une substance libérée par un neurone donné dans la fente synaptique, substance qui inhibe ou active le neurone suivant. Une hormone est quant à elle sécrétée dans le milieu intérieur le sang et exerce son effet sur un tissu ou organe éloigné. Cependant, on s'est rendu compte que certains neurotransmetteurs ont une action hormonale. En effet, il existe des neurones dits neurosécréteurs, qui libèrent des neurohormones : des molécules qui agissent comme neurotransmetteurs quand elles sont libérées au niveau d'une synapse, et comme hormones quand elles passent dans le circuit sanguin. C'est le cas de la vasopressine, synthétisée par des neurones de l'hypothalamus, libérée dans la circulation sanguine au niveau de l'hypophyse, et classiquement connue pour son effet antidiurétique. De nombreux travaux soulignent à présent ses capacités de neurotransmetteur.

Les deux systèmes, nerveux et hormonal, interagissent étroitement. Par exemple, la libération d'hormones par l'hypophyse est sous le contrôle des neurohormones dites « de libération », produites par l'hypothalamus, dont les neurones sont eux-mêmes stimulés ou inhibés par les influx nerveux provenant du système nerveux central. Ainsi, le fait qu'un nourrisson commence à téter est enregistré et transmis par le système nerveux jusqu'à l'hypothalamus qui déclenche la libération, par l'hypophyse, de l'hormone responsable de la montée de lait l'ocytocine. Inversement, les hormones exercent des rétroactions sur le système nerveux. Les stéroïdes, par exemple, peuvent traverser la barrière hémato-encéphalique* et agir directement sur le fonctionnement des neurones en se liant à des récepteurs situés à l'intérieur de la cellule nerveuse. Enfin, certaines hormones exercent une action globale sur les réseaux neuronaux. Elles interviennent dans le développement du cerveau et dans ce qu'on appelle la plasticité neuronale division cellulaire, différenciation des neurones, pousse des prolongements, établissement de contacts entre cellules, lors du développement prénatal et durant les mois qui suivent la naissance. Ces hormones sont susceptibles d'intervenir à nouveau à l'âge adulte lorsqu'il faut établir de nouvelles connexions en cas de lésion cérébrale, ou quand se réorganisent les circuits nerveux.

Garçon ou fille : les hormones ont-elles leur mot à dire ?
Aussi étrange que cela puisse paraître, la réponse est, dans une certaine mesure, oui. Certes, chez les mammifères, la détermination du sexe et la sexualisation des gonades en testicules ou en ovaires est essentiellement génétique. Mais la différenciation des voies génitales en voies mâles est conditionnée par la présence de testostérone et d'hormone anti-müllérienne*, toutes deux produites par le testicule embryonnaire. La perturbation de la synthèse de ces hormones peut engendrer des ambiguïtés sexuelles dans lesquelles le sexe phénotypique morphologique n'est pas en accord avec le sexe génotypique chromosomique. Très actives durant la vie foetale et les premiers mois de vie, les hormones sexuelles sont moins présentes durant l'enfance. Durant la puberté, elles sont à nouveau synthétisées de façon conséquente et conduisent à la mise en place du système mature féminin ou masculin et du cycle ovulatoire chez la femelle.

Chez les oiseaux et la plupart des amphibiens, la détermination du sexe se fait de façon similaire à celle des mammifères. En revanche, poissons et reptiles sont dépourvus de chromosomes sexuels. Chez eux, la sexualisation des gonades est entièrement sous dépendance hormonale. Chez certaines espèces comme les crocodiliens, la plupart des tortues, et quelques lézards et poissons, c'est la température du milieu qui oriente la sexualisation, car elle régule l'activité des gènes codant telle ou telle hormone. Chez beaucoup de poissons de récifs, c'est la structure du groupe la proportion de mâles et de femelles qui « décide » du sexe d'un individu. Ces poissons sont hermaphrodites : ils possèdent ovaires et testicules. Si un mâle disparaît, une femelle se masculinise. Ce phénomène s'effectue sous l'influence d'hormones dont la production, pense-t-on, est déclenchée sous l'effet de différents stimuli nerveux.

Les hormones influencent-elles les comportements ?
Les hormones sont impliquées dans de nombreux comportements qui vont du stress au comportement amoureux en passant par le comportement maternel ou l'agressivité. Elles n'agissent toutefois jamais seules dans leur mise en place, mais en liaison étroite avec le système nerveux. Par exemple, chez la brebis, l'attachement maternel est lié à la présence d'une hormone, l'ocytocine, dont la production est déclenchée par les stimulations nerveuses générées par les contractions de la femelle en train de mettre bas. En temps normal, la brebis éprouve de la répulsion pour le liquide amniotique. Sous l'influence de l'ocytocine, elle sera attirée par ce liquide dont est imprégné son nouveau-né. Cette attirance temporaire va la pousser à lécher son petit et à établir un premier contact. Les hormones jouent également un rôle important dans le comportement sexuel - par exemple, les parades très ritualisées des oiseaux. Chez les humains, ce sont les stéroïdes qui prédominent en ce domaine. Mais leur effet est plus difficile à estimer que celui des hormones intervenant dans la sexualité d'autres animaux au comportement très stéréotypé, car il se conjugue à d'autres paramètres, notamment culturels. Par ailleurs, une baisse de testostérone au cours de la vie, ou une surproduction, aura des effets centraux sur le comportement.

Les hormones végétales influencent quant à elles le comportement de la plante en fonction de l'environnement. Par exemple, en cas de stress hydrique, l'acide abscissique entraîne une fermeture des stomates au niveau de la feuille. Certaines phytohormones comme l'acide jasmonique sont synthétisées en cas de danger et enclenchent la production de molécules de résistance à l'agression.

Qu'est-ce qu'une hormone de synthèse ?
Les stéroïdes ont été les premières hormones synthétisées in vitro, dans les années 1950. C'était alors par voie chimique. En 1975, ce fut le tour des hormones protéiques comme l'insuline, par génie génétique cette fois. Dans ce type de synthèse, le gène codant pour l'hormone est transféré dans le génome de cellules en culture, généralement des bactéries. Ces dernières présentent l'avantage de se diviser rapidement, et donc de fournir de grosses quantités d'hormones en peu de temps. Pour les hormones plus complexes, par exemple les hormones glycoprotéiques comme les gonadotropines les dernières à avoir été synthétisées et les plus difficiles à fabriquer, on est obligé, les bactéries ne pouvant pas synthétiser de protéines glycosylées, d'utiliser des cellules eucaryotes qui se divisent moins vite. Ce mode de production coûte donc plus cher. L'utilisation d'hormones de synthèse représente une avancée décisive, car elle permet d'éviter les problèmes sanitaires qui peuvent résulter de l'usage d'hormones d'extraction. En effet, ces dernières sont susceptibles de servir de vecteur de contamination. Ainsi, des patients traités par de l'hormone de croissance extraite d'hypophyses prélevées sur les cadavres de personnes atteintes de la maladie de Creutzfeldt-Jakob ont contracté la maladie. Aujourd'hui, cette hormone est exclusivement produite par génie génétique.

Les hormones peuvent-elles servir de médicament ?
Oui. On peut évidemment les utiliser pour soigner les pathologies dues à un déficit en une hormone donnée : diabète, problèmes de croissance, problèmes de fécondité. Dans ce cas, l'hormone utilisée sera précisément celle qui fait défaut. Dans les troubles causés par une surproduction hormonale, il suffit bien souvent de traiter le malade avec une hormone impliquée dans la boucle de régulation et exerçant un contrôle négatif sur l'hormone incriminée. Reste le cas des pathologies hormono-dépendantes telles que le cancer de la prostate et une forme de cancer du sein : la croissance des cellules tumorales est stimulée dans le premier cas par la testostérone et dans le second cas par l'oestradiol. Une fois cette dépendance hormonale établie, la thérapie vise à supprimer la sécrétion de l'hormone en question.

Un traitement hormonal n'étant pas anodin, il ne doit être mis en oeuvre que si le rapport bénéfice/risque est réellement favorable. Ainsi la controverse concernant les effets secondaires des traitements hormonaux de substitution des femmes ménopausées risques accrus de cancers du sein, par exemple n'est-elle pas close. Quant aux hormones « de confort » telles que la mélatonine ou la DHEA, leur prise inconsidérée n'est pas à conseiller : au mieux elle n'a aucun effet, au pire elle est dangereuse. Les dangers d'une utilisation non contrôlée d'hormones sont particulièrement flagrants dans le cas du dopage. L'érythropoïétine EPO, par exemple, est une hormone qui stimule la production des globules rouges. Elle augmente l'hématocrite et permet de fixer plus d'oxygène, mais augmente parallèlement le risque de thrombose.

Enfin, dans la relation entre hormones et santé, un autre problème commence à préoccuper les scientifiques : l'impact de ce que l'on appelle les perturbateurs endocriniens. Ces molécules, pesticides ou autres substances chimiques, pourraient en effet perturber notre système de régulation hormonale et celui des animaux et végétaux de notre environnement.

Qu'est-ce qu'un boeuf ou un poulet « aux hormones » ?
Il s'agit d'un boeuf en fait, plutôt un veau ou d'un poulet auquel on a fait des injections d'hormones pour augmenter sa masse musculaire, et donc la quantité de viande obtenue après abattage. Certains pays, comme les Etats-Unis ou le Canada, font couramment usage de ce type de traitement. Mesure protectionniste ou d'intérêt sanitaire : il a été interdit en Europe dès 1984. Son impact sur la santé n'est pas démontré. Par ailleurs, il convient d'établir un distinguo entre l'injection d'un surplus d'hormones déjà synthétisées naturellement par l'animal et l'injection d'hormones qui lui sont totalement étrangères. En effet, les hormones naturelles sont rapidement dégradées par le boeuf ou le poulet. La testostérone, par exemple, disparaît en quelques jours, et le consommateur ne risque pas de l'absorber si la dernière injection a lieu quelques jours avant l'abattage. Mais elle a tout de même un effet sur le goût car elle modifie le ratio protéines/graisse - laquelle donne l'essentiel de sa saveur à la viande. Quant aux hormones qui ne sont pas naturellement déjà présentes chez l'animal, elles présentent le désavantage réel, quand on les injecte, d'être dégradées assez lentement et de s'accumuler dans la masse graisseuse. Le consommateur risque donc de les ingérer.
NOTES
* Hémolymphe : fluide qui circule dans les vaisseaux et l'espace interstitiel des tissus des invertébrés, et transporte les métabolites et l'oxygène sauf chez les insectes, où ce dernier circule dans des trachées.

*La barrière hémato-encéphalique , constituée par la paroi des vaisseaux capillaires du cerveau, restreint au strict minimum le type de molécules accédant à ce dernier. Elle le protège ainsi des variations de composition du sang, mais interdit aussi le passage de nombreux médicaments.

* Hormone anti-müllérienne : hormone sécrétée par le testicule embryonnaire. Elle provoque l'atrophie du canal de Müller qui, chez l'embryon femelle, est à l'origine des trompes, de l'utérus et d'une grande partie du vagin.
SAVOIR
-Y. Combarnous, Les hormones, PUF, collection « Que sais-je ? », 1998.

-J.-D. Vincent, La Biologie des passions, éditions Odile Jacob, 1999 poche 2002.

-C.G.D. Brook et N.J. Marshall, Endocrinologie, De Boeck Université, 1998.


   DOCUMENT       larecherche.fr       LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google