ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

PLASTICIT DU MANTEAU TERRESTRE

 

Paris, 03 MARS 2014


La plasticité du manteau terrestre enfin expliquée
Le manteau terrestre constitue une enveloppe solide animée de lents et constants mouvements de convection. Comment les roches se déforment-elles pour permettre un tel mouvement alors que les minéraux tels que l'olivine -constituant principal du manteau supérieur- ne présentent pas assez de défauts dans leur structure cristalline pour expliquer les déformations observées dans la nature ? Une équipe menée par l'Unité matériaux et transformations (CNRS/Université Lille 1/Ecole nationale supérieure de chimie de Lille), vient d'apporter une explication inattendue à cette question. Celle-ci met en jeu des défauts cristallins très mal connus et jusqu'alors jamais pris en compte, appelés « désinclinaisons », situés à l'interface entre les grains minéraux qui composent les roches. En prenant comme cas d'étude l'olivine, les chercheurs sont parvenus pour la première fois à visualiser ces défauts et à modéliser le comportement des joints de grains face à une contrainte mécanique. Ces résultats qui viennent d'être publiés dans Nature dépassent largement le cadre des géosciences : ils apportent un outil nouveau et extrêmement puissant à l'étude de la dynamique des solides et aux sciences des matériaux en général.
La Terre évacue sa chaleur en continu grâce aux mouvements de convection qui animent le manteau terrestre sur lequel reposent les continents. Comprendre cette convection est donc primordial pour l'étude de la tectonique des plaques. Le manteau est constitué de roches solides. Pour que celui-ci puisse s'animer de mouvements de convection, il est nécessaire que la structure cristalline de ses roches puisse se déformer. Ceci constituait jusque-là un paradoxe que la science n'arrivait pas tout à fait à résoudre. En effet, les défauts de la structure des cristaux, appelés dislocations, qui expliquent très bien la plasticité des métaux, n'étaient pas suffisants pour expliquer les déformations que subissent certaines roches du manteau.

Les chercheurs imaginaient bien que la solution était à chercher au niveau des interfaces des grains minéraux qui composent les roches. Cependant, ils manquaient d'outils conceptuels pour décrire et modéliser le rôle joué par ces parois entre les grains dans la plasticité des roches. Les chercheurs de l'Unité matériaux et transformations (CNRS/Université Lille 1/Ecole nationale supérieure de chimie de Lille) en collaboration avec ceux du laboratoire Géosciences Montpellier (CNRS/Université Montpellier 2) et du Laboratoire d'étude des microstructures et de mécanique des matériaux (CNRS/Université de Lorraine/Arts et Métiers ParisTech/Ecole Nationale d'Ingénieurs de Metz) ont réussi à expliquer ce rôle. En effet, ils ont montré que la structure cristalline des interfaces entre les grains présente des défauts très particuliers appelés « désinclinaisons », défauts qui n'avaient jusqu'à présent jamais été pris en compte. Les chercheurs sont parvenus à les observer pour la première fois sur des échantillons d'olivine (qui constitue jusqu'à 60% du manteau supérieur), grâce à un microscope électronique et un traitement spécial des images. Puis, ils sont allés plus loin : à l'aide d'un modèle mathématique de ces « désinclinaisons », ils ont démontré que celles-ci expliquaient la plasticité de l'olivine. En appliquant des contraintes mécaniques, les « désinclinaisons » permettent aux joints de grains de se déplacer, et donc à l'olivine de se déformer dans n'importe quelle direction. Ainsi, écoulement et rigidité du manteau ne sont plus incompatibles.

Ces travaux vont bien au-delà de l'explication de la plasticité des roches du manteau terrestre. Il s'agit d'une avancée majeure en sciences des matériaux. La prise en compte des « désinclinaisons » devrait fournir aux scientifiques un outil nouveau pour expliquer de nombreux phénomènes liés à la mécanique des solides. Les chercheurs veulent poursuivre leur étude de la structure des joints grains sur d'autres minéraux, mais aussi sur d'autres solides comme des métaux.

 

DOCUMENT             CNRS               LIEN

 
 
 
 

NANOFIBRES ET LASER ...

 

Des nanofibres pour une conversion efficace de la longueur d’onde d’un laser


18 juillet 2013


Laser , fibre optique , LCF - UMR 8501 , nanofibre , diffusion Raman , non linéaire
Des physiciens viennent de démontrer la conversion de longueur d’onde d’un faisceau vert en un faisceau rouge par diffusion Raman stimulée avec une efficacité de 50% en le faisant traverser une nanofibre de silice baignant dans de l’éthanol.

Télécharger le PDF

Les processus d’optique non linéaire mis en œuvre pour convertir la longueur d’onde d’un faisceau lumineux requièrent de faire traverser des matériaux spécifiques par un faisceau intense. En concentrant la lumière dans leur cœur sur de grandes distances, les fibres optiques sont potentiellement très bien adaptées à ces processus, mais de nombreux matériaux utilisés pour l’optique non linéaire ne peuvent pas constituer de fibre. Des physiciens du laboratoire Charles Fabry (CNRS/IOGS) et de l’Université de Hangzhou (Chine) viennent de montrer que l’on peut contourner cette difficulté en plaçant le matériau non linéaire autour d’une fibre optique de diamètre nanométrique. Le faisceau lumineux canalisé par cette fibre se trouve en fait essentiellement hors du cœur de silice et interagit donc efficacement avec le milieu non linéaire qui l’entoure. Un rendement de près de 50% a ainsi été obtenu pour la conversion Raman d’un faisceau laser vert traversant de l’éthanol, sur une distance 10 fois plus faible qu’avec une fibre creuse contenant l’éthanol en son cœur. Ce travail est publié dans le Journal of the European Optical Society Rapid Publication.
Les physiciens ont développé une « plateforme d’étirage de fibres » pour étirer les fibres optiques de silice de même type que celles employées dans les réseaux de communication. Cet étirement de la fibre s’accompagne d’un affinement, le diamètre est réduit d’un facteur supérieur à 100, passant des 125 µm de la fibre d’origine à quelques centaines de nanomètres, cela sur une longueur pouvant atteindre 10 centimètres. La nanofibre obtenue se trouve entre deux sections de fibres standard de 125 µm d’un maniement particulièrement aisé pour injecter et récupérer la lumière. Le passage de la fibre standard à la nanofibre s’effectue sans perte et s’accompagne d’un très fort accroissement de l’intensité lumineuse lié à la réduction du diamètre. Bien que le diamètre de la nanofibre soit considérablement plus faible que la longueur d’onde de la lumière, le guidage persiste, mais une partie significative de l’énergie optique se propage hors de la silice et donc dans le milieu qui baigne cette dernière. Après une première expérience utilisant l’éthanol comme milieu non linéaire, les physiciens ont utilisé du toluène dilué dans de l’éthanol. Ils ont alors observé une cascade Raman : le faisceau initial à 532 nm excite le premier ordre Stokes du toluène à 562 nm qui excite à son tour le second ordre Stokes du toluène à 596 nm. Ces premières démonstrations ouvrent la voie à un vaste éventail de nouvelles expériences en optique non linéaire.

 

DOCUMENT             CNRS             LIEN

 
 
 
 

CORRECTION DE LENTILLES GRAVITATIONNELLES

 

Des supernovae permettent de mesurer la correction de lentilles gravitationnelles – vers une meilleure cartographie de la matière noire
Jeudi, 1 Mai 2014


Deux équipes d’astronomes utilisant le télescope spatial Hubble (CLASH - Cluster Lensing And Supernova survey with Hubble - et Supernova Cosmology Project), comprenant des chercheurs du Centre de Recherche Astrophysique de Lyon (CNRS/Université Claude Bernard de Lyon/ENS), ont découvert trois explosions d’étoiles distantes, qui ont été amplifiées par des amas de galaxies massifs agissant comme des “lentilles cosmiques” sur la ligne de visée. C’est la première fois que de telles supernovae, dont la brillance intrinsèque est bien connue, sont observées derrière des amas de galaxies, offrant aux astronomes l’opportunité de mesurer la correction de ces lentilles naturelles. Les résultats de l’équipe CLASH paraissent dans The Astrophysical Journal. Ceux du Supernova Cosmology Project dans Monthly Notices of the Royal Astronomical Society. 

Les amas de galaxies massifs font office de “lentilles gravitationnelles“ car leur champ de gravitation puissant déforme la lumière qui les traverse*. Ce phénomène rend visible les objets situés derrière les amas plus grands et plus brillants, qui les rendraient impossible à observer autrement, même avec les télescopes les plus puissants.
Les résultats obtenus sont les premières étapes vers une mesure très précise de la correction d’une telle lentille. L’amplification subie par la lumière dépend de la masse et donc de la quantité de matière dans un amas – y compris la matière noire que nous ne pouvons pas observer directement**. Par des mesures sur l'expansion de l'Univers, les astronomes arrivent à cartographier et estimer la quantité de matière noire dans un amas. Ces cartes permettent de déduire la correction optique d’un amas de galaxies et prédisent comment la lumière d’objets distants sera amplifiée à son passage. Mais comment les astronomes peuvent-ils savoir que cette estimation est correcte ?

A présent, deux équipes indépendantes du Supernova Cosmology Project et de  CLASH ont découvert une méthode pour tester la correction d’une lentille cosmique. Elles ont analysé trois supernovae au travers de différents amas. Par chance, au moins l’une d’entre elles (et peut-être les trois) sont un type spécial, des supernovae de type Ia, appelées aussi « chandelles standard » que l’ont sait reconnaître à leur courbe de lumière, c’est à dire la manière dont le flux lumineux évolue dans le temps. Sans connaître a priori l’intensité du flux au sortir de l’étoile on reconnait néanmoins le profil de cette courbe. Ce profil est caractéristique d’un certain type d’explosion dont l’intensité lumineuse émise est toujours la même. Ainsi connaît-on la brillance intrinsèque d’un tel objet lorsque l'on en trouve un.
Les équipes ont mesuré la brillance des supernovae amplifiée par les amas et les ont comparé à leur luminosité intrinsèque – qu’ils connaissent puisque les supernovae sont de type Ia. Ainsi ont-ils pu déterminer de combien chaque supernova a été amplifiée par l’amas. L’une d’entre elles en particulier apparaît deux fois plus brillante grâce au pouvoir amplificateur de l’amas.
 Chacune des équipes a comparé ses résultats avec des modèles théoriques du contenu des amas en matière noire construits indépendamment (Supernova Cosmology Project d’une part et CLASH de l’autre). Elles sont arrivées à la même conclusion : les prédictions sont en adéquation avec les modèles.

Les modèles d’amas complexes du Supernova Cosmology Project ont été créés au Centre de Recherche Astrophysique de Lyon et l’Ecole Polytechnique Fédérale de Lausanne en Suisse. Les mesures faites sur les supernovae apportent de solides confirmations de leur validité ce qui permet aux chercheurs de pouvoir s’y appuyer pour sonder l’Univers distant. Les astronomes sont optimistes car les futurs sondages sur Hubble et ses successeurs, comme le télescope infrarouge James Webb Space Telescope, trouveront d’avantages de ces explosions d’étoiles uniques.

 

DOCUMENT           CNRS            LIEN

 
 
 
 

QU'EST-CE QU'UNE PARTICULE ?

 

Texte de la 208e conférence de l’Université de tous les savoirs donnée le 27 juillet 2000.Qu'est-ce qu'une particule élémentaire?par André NeveuIntroduction De façon extrêmement pragmatique, une particule élémentaire est un constituant de la matière (ou du rayonnement) qui ne nous apparaît pas comme lui-même composé d'éléments encore plus élémentaires. Ce statut, composé ou élémentaire, est à prendre à un instant donné, et à revoir éventuellement avec l'affinement des procédés d'investigation. Mais il y a plus profond dans cet énoncé : chaque étape de l'investigation s'accompagne d'une interprétation, d'une recherche d'explication sur la manière dont ces particules interagissent pour former des entités composées à propriétés nouvelles, c'est à dire d'une construction théorique qui s'appuie sur des mathématiques de plus en plus abstraites, et qui, au cours de ce siècle, a contribué à plusieurs reprises au développement de celles-ci. Le long de cette quête d'une construction théorique cohérente, des problèmes peuvent apparaître, qui conduisent à la prédiction de particules ou d'interactions non encore découvertes, et ce va et vient entre théorie et expérience également raffinées où chacune interpelle l'autre, n'est pas le moins fascinant des aspects de cette quête de l'ultime. Aspect qui se retrouve d'ailleurs dans bien d'autres domaines de la physique. C'est là qu'est la vie de la recherche, plus que dans la construction achevée : les faits nous interpellent et à notre tour nous les interpellons. Où en sommes-nous aujourd'hui ? Une brève descente dans l'infiniment petit Comme chacun sait, la chimie et la biologie sont basées sur le jeu presque infini de molécules constituées d'atomes. Comme l'étymologie l'indique, on a cru ceux-ci élémentaires, et, effectivement, pour la chimie et la biologie, on parle toujours à juste titre d'éléments chimiques, oxygène, hydrogène, carbone, etc. L'ordre de grandeur de la dimension d'un atome est le dix milliardième de mètre. Depuis le début du siècle, on sait que chaque atome est formé d'électrons autour d'un noyau, cent mille fois plus petit que l'atome. Le noyau est lui-même constitué de protons et de neutrons liés entre eux par des forces de liaison nucléaires mille à dix mille fois plus grandes que les forces électrostatiques qui lient les électrons au noyau. Alors que les électrons restent à ce jour élémentaires, on a découvert il y a quarante ans environ que les protons et les neutrons eux-mêmes sont composés de quarks liés entre eux par des forces encore plus grandes, et nommées interactions fortes à ce titre (en fait, elles sont tellement fortes qu'il est impossible d'observer un quark isolé). Au cours de cette quête des cinquante dernières années, à l'aide principalement des grands accélérateurs comme ceux du CERN, on a découvert d'autres particules, neutrinos par exemples et des espèces d'électrons lourds (muon et lepton τ), et diverses espèces de quarks, la plupart de durée de vie extrêmement courte, leur laissant, même à la vitesse de la lumière, à peine le temps de faire une trace de quelques millimètres dans les appareils de détection, et aussi les antiparticules correspondantes. quarksuctgluonsdsb interactions fortesleptonsneutrinosυeυμυτW+ γ Z0 W-chargéseμτ interactions électrofaiblesgravitontrois « générations » de matièrevecteurs de forces Figure 1 Les particules élémentaires actuellement connues. À gauche les trois générations de fermions (quarks et leptons). Chaque quark existe en trois « couleurs », « vert », « rouge » et « bleu ». Chaque lepton chargé (électron e , muon μ et tau τ ) est accompagné d'un neutrino. À droite les vecteurs de forces : gluons, photon γ , bosons W et Z , graviton. La figure 1 présente l'ensemble des particules actuellement connues et considérées comme élémentaires, quarks et leptons, et des vecteurs de forces (voir plus bas) entre eux. Alors que les leptons s'observent isolément, les quarks n'apparaissent qu'en combinaisons « non colorées » : par exemple, le proton est formé de trois quarks (deux u et un d), un de chaque « couleur », (laquelle n'a rien à voir avec la couleur au sens usuel) « vert », « bleu », « rouge », pour que l'ensemble soit « non coloré ». D'autres particules, pions π et kaons K par exemple, sont constituées d'un quark et d'un antiquark, etc., tout cela de façon assez analogue à la formation de molécules en chimie à partir d'atomes. Pour avoir une idée de toute la richesse de combinaisons possibles et en même temps de la complexité et du gigantisme des appareils utilisés pour les détecter, je vous invite vivement à visiter le site du CERN, http ://www.cern.ch. Figure 2 Un événement observé aux anneaux de collision électrons-positrons du LEP. La figure 2 est un piètre exemple en noir et blanc de ce qu'on peut trouver en splendides couleurs sur ce site, une donnée expérimentale presque brute sortie du grand détecteur Aleph au collisionneur électrons-positrons LEP : les faisceaux d'électrons et positrons arrivent perpendiculairement à la figure, de l'avant et de l'arrière, au point d'interaction IP, où ils ont formé un boson Z de durée de vie extrêmement courte, qui s'est désintégré en une paire quark-antiquark, rapidement suivis de la création d'autres paires qui se sont réarrangées pour donner les traces visibles issues de IP et d'autres invisibles, car électriquement neutres, mais éventuellement détectables au moment de leur désintégration en particules chargées (pion, kaons et électrons en l'occurrence). En mesurant les longueurs des traces et les énergies des produits de désintégration et leur nature, on parvient à remonter aux propriétés des quarks produits au point IP et des mésons qu'ils ont formés. Cette figure, par son existence même, est un exemple de va et vient théorie-expérience : il faut avoir une idée très précise du genre d'événement que l'on cherche, et d'une interprétation possible, car il s'agit vraiment de chercher une aiguille dans une meule de foin : il y a un très grand nombre d'événements sans intérêt, que les ordinateurs qui pilotent l'expérience doivent rejeter avec fiabilité. Il est intéressant de noter que plusieurs membres de la figure 1 ont été prédits par cohérence de la théorie (voir plus bas), les quarks c, b, t, et le neutrino du τ, détecté pour la première fois il y a quinze jours, et, dans une certaine mesure, les bosons W et Z. Comme l'appellation des trois « couleurs », les noms de beaucoup de ces particules relèvent de la facétie d'étudiants ! Après la liste des particules, il nous faut parler de leurs interactions, car si elles n'interagissent pas entre elles, et finalement avec un détecteur, nous ne les connaîtrions pas ! En même temps que leurs interactions, c'est à dire leur comportement, nous aimerions comprendre comment on en a prédit certaines par cohérence de la théorie, mais aussi la raison de leur nombre, des caractéristiques de chacune, bref le pourquoi de tout (une ambition qui est fortement tempérée par l'indispensable humilité devant les faits) ! Dans le prochain paragraphe, nous tenterons cette explication. Comprendre Symétries et dynamique : la théorie quantique des champs Ici, les choses deviennent plus difficiles. Vous savez que les électrons tournent autour du noyau parce qu'ils sont négatifs et le noyau positif, et qu'il y a une attraction électrostatique entre les deux. Cette notion de force (d'attraction en l'occurrence) à distance n'est pas un concept compatible avec la relativité restreinte : une force instantanée, par exemple d'attraction électrostatique entre une charge positive et une charge négative, instantanée pour un observateur donné, ne le serait pas pour un autre en mouvement par rapport au premier. Pour les forces électrostatiques ou magnétiques par exemple, il faut remplacer la notion de force par celle d'échange de photons suivant le diagramme de la figure 3a. Ce diagramme décrit l'interaction entre deux électrons par l'intermédiaire d'un photon. Il peut aussi bien décrire les forces électrostatiques entre deux électrons d'un atome que l'émission d'un photon par un électron de la figure que vous êtes en train de regarder suivi de son absorption par un électron d'une molécule de rhodopsine dans votre rétine, qu'il amène ainsi dans un état excité, excitation ensuite transmise au cerveau. On remplace ainsi la force électromagnétique à distance par une émission et absorption de photons, chacune ponctuelle. Entre ces émissions et absorptions, photons et électrons se déplacent en ligne droite (le caractère ondulé de la ligne de photon n'est là que pour la distinguer des lignes d'électrons. On dit que le photon est le vecteur de la force électromagnétique. Les autres vecteurs de force sur la figure 3 sont les gluons g, vecteurs des interactions fortes entre les quarks, les bosons W et Z, vecteurs des interactions « faibles » responsables de la radioactivité β, et le graviton, responsable de la plus ancienne des forces connues, celle qui nous retient sur la Terre. Remarquons que l'on peut faire subir à la figure 3a une rotation de 90 degrés. Elle représente alors la formation d'un photon par une paire électron-antiélectron (ou positron), suivie par la désintégration de ce photon en une autre paire. Si on remplace le photon par un boson Z, et que celui-ci se désintègre en quark-antiquark plutôt qu'électron-positron, on obtient exactement le processus fondamental qui a engendré l'événement de la figure 2. Figure 3 Diagrammes de Feynman 3a : diffusion de deux électrons par échange d'un photon. 3b : création d'une paire électron-positron. 3c : une correction au processus 3a. La figure 3b décrit un autre processus, où le photon se désintègre en une paire électron-positron. En redéfinissant les lignes, une figure identique décrit la désintégration β du neutron par la transformation d'un quark d en quark u avec émission d'un boson W qui se désintègre en une paire électron-antineutrino. Si les « diagrammes de Feynman » de la figure 3 (du nom de leur inventeur) sont très évocateurs de ce qui se passe dans la réalité (la figure 2), il est extrêmement important de souligner qu'ils ne sont pas qu'une description heuristique des processus élémentaires d'interactions entre particules. Ils fournissent aussi des règles pour calculer ces processus avec une précision en principe presque arbitraire si on inclut un nombre suffisant de diagrammes (par exemple, le diagramme de la figure 3c est une correction à celui de la figure 3a, dans laquelle il y a une étape intermédiaire avec une paire électron-positron, qui modifie légèrement les propriétés de l'absorption, par la ligne de droite, du photon qui avait été émis par la ligne de gauche). Ces règles sont celles de la théorie quantique des champs, un cadre conceptuel et opérationnel combinant la mécanique quantique et la relativité restreinte qu'il a fallu environ 40 ans pour construire, une des difficultés principales ayant été de donner un sens aux diagrammes du genre de la figure 3c. En même temps que la dynamique des particules, cette théorie donne des contraintes sur celles qui peuvent exister, ou plutôt des prédictions d'existence sur d'autres non encore découvertes, étant données celles qu'on connaît déjà. Ce fut le cas des quarks c, b et t, et du neutrino du τ. Elle implique aussi l'existence des antiparticules pour les quarks et leptons (les vecteurs de force sont leurs propres antiparticules). Un des guides dans cette construction a été la cohérence, mais aussi l'unification par des symétries, de plus en plus grandes au fur et à mesure de la découverte de particules avec des propriétés nouvelles, et on a trouvé que cohérence et unification allaient ensemble. Avoir un principe de symétrie est puissant, car il limite et parfois détermine entièrement les choix des particules et leurs interactions, mais aussi, une fois qu'on en connaît certaines, d'autres sont déterminées. Cela permet ainsi d'appréhender avec efficacité toute cette faune. Par exemple, la symétrie entre électron et neutrino, ou entre les quarks u et d conduit à la prédiction des bosons W, mais alors on s'aperçoit immédiatement qu'en même temps il faut introduire le Z ou le photon ou les deux, et en même temps aussi leurs interactions sont déterminées. De même, le gluon et la force forte sont la conséquence d'une symétrie entre les trois « couleurs » de quarks. Ces symétries sont des rotations dans un espace interne, notion que nous allons à présent essayer d'expliciter avec une image simple en utilisant un Rubik’s cube. Un Rubik’s cube peut subir des rotations d'ensemble, que nous pouvons appeler transformations externes, et des transformations internes qui changent la configuration des couleurs de ses 9×6=54 facettes. Il faut imaginer qu'un électron ou un quark sont comme une configuration du cube, et que les symétries de la théorie sont les transformations internes qui font passer d'une configuration du cube à une autre. En fait, comme en chaque point de l'espace-temps il peut y avoir n'importe quelle particule, il faut imaginer qu'en chaque point de l'espace-temps il y a l'analogue d'un tel Rubik cube, espace « interne » des configurations de particules. Bien plus, on peut exiger que la théorie soit symétrique par rapport à l'application de transformations du cube différentes, indépendantes les unes des autres, en chaque point. On constate alors qu'on doit naturellement introduire des objets qui absorbent en quelque sorte le changement de la description de l'espace interne quand on passe d'un point à son voisin. Ces objets sont précisément les vecteurs des forces. De plus, les détails de la propagation, de l'émission et de l'absorption de ces particules vecteurs de forces sont prédits de façon à peu près unique. Il est facile d'imaginer que tout ceci fait intervenir une structure mathématique à la fois très complexe et très riche, malheureusement impossible à décrire dans le cadre de cette conférence. Un dernier ingrédient de la construction est la notion de brisure spontanée de symétrie. Car certaines des symétries dont il vient d'être question sont exactes (par exemple celle entre les « couleurs » des quarks), d'autres ne sont qu'approchées : par exemple, un électron et son neutrino n'ont pas la même masse. Dans le phénomène de brisure spontanée de symétrie, on part d'une théorie et d'équations symétriques, mais leurs solutions stables ne sont pas nécessairement symétriques chacune séparément, la symétrie faisant seulement passer d'une solution à une autre. Ainsi dans l'analogue classique d'une bille au fond d'une bouteille de Bordeaux : le problème de l'état d'équilibre de la bille au fond est symétrique par rotation, mais la position effectivement choisie par la bille ne l'est pas. Il y a une infinité de positions d'équilibre possibles, la symétrie par rotation du problème faisant seulement passer de l'une à une autre. La brisure de symétrie permet de comprendre le fait que les leptons chargés par exemple n'aient pas la même masse que leurs neutrinos associés, ou que le photon soit de masse nulle, alors que le W et le Z sont très lourds. L'ensemble de la construction trop brièvement décrite dans ce chapitre a valu le prix Nobel 1999 à Gerhardt 't Hooft et Martinus Veltman, qui en avaient été les principaux artisans dans les années 1970. À l'issue de tout ce travail, on a obtenu ce que l'on appelle le Modèle Standard. C'est l'aboutissement actuel d'unifications successives des forces, commencées par Maxwell au siècle dernier entre électricité et magnétisme (électromagnétisme) qui à présent incluent les interactions faibles : on parle des forces électrofaibles pour englober le photon et les bosons W et Z[1] . Le Modèle Standard prédit l'existence d'une particule, la seule non encore observée dans le modèle, le boson de Higgs, et comment celui-ci donne leur masse à toutes les particules par le mécanisme de brisure de symétrie. Ce dernier acteur manquant encore à l'appel fait l'objet d'une recherche intense, à laquelle le prochain accélérateur du CERN, le LHC, est dédiée. S'il décrit qualitativement et quantitativement pratiquement toutes les particules observées et leurs interactions (le « comment »), le Modèle Standard laisse sans réponse beaucoup de questions « pourquoi ». Par exemple pourquoi y a-t-il trois générations (les colonnes verticales dans la figure 1) ? Pourquoi la force électrofaible comprend-elle quatre vecteurs de force (il pourrait y en avoir plus) ? Par ailleurs toutes les masses et constantes de couplage des particules sont des paramètres libres du modèle. Il y en a une vingtaine en tout, ce qui est beaucoup : on aimerait avoir des principes qui relient ces données actuellement disconnectées. Peut-on unifier plus : y a-t-il une symétrie reliant les quarks aux leptons ? De plus, des considérations plus élaborées permettent d'affirmer que dans des domaines d'énergie non encore atteints par les accélérateurs, le modèle devient inopérant : il est incomplet, même pour la description des phénomènes pour lesquels il a été construit. Plus profondément, il laisse de côté la gravitation. La satisfaction béate ne règne donc pas encore, et nous allons dans le chapitre suivant présenter les spéculations actuelles permettant peut-être d'aller au delà. Au delà du Modèle Standard Grande unification, supersymétrie et supercordes La gravitation universelle introduite par Newton a été transformée par Einstein en la relativité générale, une théorie d'une grande beauté formelle et remarquablement prédictive pour l'ensemble des phénomènes cosmologiques. Mais il est connu depuis la naissance de la mécanique quantique que la relativité générale est incompatible avec celle-ci : quand on tente de la couler dans le moule de la théorie quantique des champs, en faisant du graviton le vecteur de la force de gravitation universelle, on s'aperçoit que les diagrammes de Feynman du type de la figure 3c où on remplace les photons par des gravitons sont irrémédiablement infinis : ceci est dû au fait que lorsqu'on somme sur toutes les énergies des états intermédiaires électron-positron possibles, les états d'énergie très grande finissent par donner une contribution arbitrairement grande, entraînant l'impossibilité de donner un sens à la gravitation quantique. La relativité générale doit être considérée comme une théorie effective seulement utilisable à basse énergie. Trouver une théorie cohérente qui reproduise la relativité générale à basse énergie s'est révélé un problème particulièrement coriace, et un premier ensemble de solutions possibles (ce qui ne veut pas dire que la réalité est parmi elles !) est apparu de manière totalement inattendue vers le milieu des années 1970 avec les théories de cordes. Dans cette construction, on généralise la notion de particule ponctuelle, élémentaire, qui nous avait guidés jusqu'à présent à celle d'un objet étendu, une corde très fine, ou plutôt un caoutchouc, qui se propage dans l'espace en vibrant. Un tel objet avait été introduit vers la fin des années soixante pour décrire certaines propriétés des collisions de protons et autres particules à interactions fortes. Il se trouve qu'il y a là un très joli problème de mécanique classique qu'Einstein lui-même aurait pu résoudre dès 1905, s'il s'était douté qu'il était soluble ! De même qu'une particule élémentaire ponctuelle, en se propageant en ligne droite à vitesse constante minimise la longueur de la courbe d'espace-temps qui est sa trajectoire, la description de la propagation et des modes de vibration d'une de ces cordes revient à minimiser la surface d'espace-temps qu'elle décrit (l'analogue d'une bulle de savon, qui est une surface minimale !), ce qui peut être effectué exactement. Le nom de corde leur a été donné par suite de l'exacte correspondance des modes de vibration de ces objets avec ceux d'une corde de piano. Quand on quantifie ces vibrations à la façon dont on quantifie tout autre système mécanique classique, chaque mode de vibration donne tout un ensemble de particules, et on sait calculer exactement les masses de ces particules. C'est là que les surprises commencent ! On découvre tout d'abord que la quantification n'est possible que si la dimension de l'espace-temps est non point quatre, mais 26 ou 10 ! Ceci n'est pas nécessairement un défaut rédhibitoire : les directions (encore inobservées ?) supplémentaires peuvent être de très petite dimension, et être donc encore passées inaperçues. On découvre simultanément que les particules les plus légères sont de masse nulle et que parmi elles il y a toujours un candidat ayant exactement les mêmes propriétés que le graviton à basse énergie. De plus, quand on donne la possibilité aux cordes de se couper ou, pour deux, de réarranger leur brins au cours d'une collision, on obtient une théorie dans laquelle on peut calculer des diagrammes de Feynman tout à fait analogue à ceux de la figure 3, où les lignes décrivent la propagation de cordes libres. Cette théorie présente la propriété d'être convergente, ce qui donne donc le premier exemple, et le seul connu jusqu'à présent, d'une théorie cohérente incluant la gravitation. Les modes d'excitation de la corde donnent un spectre de particules d'une grande richesse. La plupart sont très massives, et dans cette perspective d'unification avec la gravitation, inobservables pour toujours : si on voulait les produire dans un accélérateur construit avec les technologies actuelles, celui-ci devrait avoir la taille de la galaxie ! Seules celles de masse nulle, et leurs couplages entre elles, sont observables, et devraient inclure celles du tableau de la figure 1. Remarquons ici un étrange renversement par rapport au paradigme de l'introduction sur l'« élémentarité » des particules « élémentaires » : elles deviennent infiniment composées en quelque sorte, par tous les points de la corde, qui devient l'objet « élémentaire » ! Au cours de l'investigation de cette dynamique de la corde au début des années 1970, on a été amené à introduire une notion toute nouvelle, celle de supersymétrie, une symétrie qui relie les particules du genre quarks et leptons (fermions) de la figure 1 aux vecteurs de force. En effet, la corde la plus simple ne contient pas de fermion dans son spectre. Les fermions ont été obtenus en rajoutant des degrés de liberté supplémentaires, analogues à une infinité de petits moments magnétiques (spins) le long de la corde. La compatibilité avec la relativité restreinte a alors imposé l'introduction d'une symétrie entre les modes d'oscillation de ces spins et ceux de la position de la corde. Cette symétrie est d'un genre tout à fait nouveau : alors qu'une symétrie par rotation par exemple est caractérisée par les angles de la rotation, qui sont des nombres réels ordinaires, cette nouvelle symétrie fait intervenir des nombres aux propriétés de multiplication très différentes : deux de ces nombres, a et b disons, donnent un certain résultat dans la multiplication a×b, et le résultat opposé dans la multiplication b×a : a×b= b×a. On dit que de tels nombres sont anticommutants. À cause de cette propriété nouvelle, et de son effet inattendu d'unifier particules et forces, on a appelé cette symétrie supersymétrie, et supercordes les théories de cordes ayant cette (super)symétrie. A posteriori, l'introduction de tels nombres quand on parle de fermions est naturelle : les fermions (l'électron en est un), satisfont au principe d'exclusion de Pauli, qui est que la probabilité est nulle d'en trouver deux dans le même état. Or la probabilité d'événements composés indépendants est le produit des probabilités de chaque événement : tirer un double un par exemple avec deux dés a la probabilité 1/36, qui est le carré de 1/6. Si les probabilités (plus précisément les amplitudes de probabilité) pour les fermions sont des nombres anticommutants, alors, immédiatement, leurs carrés sont nuls, et le principe de Pauli est trivialement satisfait ! Les extraordinaires propriétés des théories des champs supersymétriques et des supercordes ont été une motivation puissante pour les mathématiciens d'étudier de façon exhaustive les structures faisant intervenir de tels nombres anticommutants. Un exemple où on voit des mathématiques pures sortir en quelque sorte du réel. De nombreux problèmes subsistent. En voici quelques uns : - L'extension et la forme des six dimensions excédentaires : quel degré d'arbitraire y a-t-il dedans (pour l'instant, il semble trop grand) ? Un principe dynamique à découvrir permet-il de répondre à cette question ? Ces dimensions excédentaires ont-elles des conséquences observables avec les techniques expérimentales actuelles ? - La limite de basse énergie des cordes ne contient que des particules de masse strictement nulle et personne ne sait comment incorporer les masses des particules de la figure 1 (ou la brisure de symétrie qui les engendre) sans détruire la plupart des agréables propriétés de cohérence interne de la théorie. Une des caractéristiques des supercordes est d'englober toutes les particules de masse nulle dans un seul et même multiplet de supersymétrie, toutes étant reliées entre elles par (super)symétrie. En particulier donc, quarks et leptons, ce qui signifie qu'il doit exister un vecteur de force faisant passer d'un quark à un lepton, et donc que le proton doit pouvoir se désintégrer en leptons (positron et neutrinos par exemple) comme la symétrie de la force électrofaible implique l'existence du boson W et la désintégration du neutron. Or, le proton est excessivement stable : on ne connaît expérimentalement qu'une limite inférieure, très élevée, pour sa durée de vie. La brisure de cette symétrie quark-lepton doit donc être très grande, bien supérieure à celle de la symétrie électrofaible. L'origine d'une telle hiérarchie de brisures des symétries, si elle existe, est totalement inconnue. - Doit-on s'attendre à ce qu'il faille d'abord placer les cordes dans un cadre plus vaste qui permettrait à la fois de mieux les comprendre et de répondre à certaines de ces questions ? Nul ne sait. En attendant, toutes les questions passionnantes et probablement solubles dans le cadre actuel n'ont pas encore été résolues. Entre autres, les cordes contiennent une réponse à la question de la nature de la singularité présente au centre d'un trou noir, objet dont personne ne doute vraiment de l'existence, en particulier au centre de nombreuses galaxies. Également quelle a été la nature de la singularité initiale au moment du Big Bang, là où la densité d'énergie était tellement grande qu'elle engendrait des fluctuations quantiques de l'espace, et donc où celui-ci, et le temps, n'avaient pas l'interprétation que nous leur donnons usuellement d'une simple arène (éventuellement dynamique) dans laquelle les autres phénomènes prennent place. Toutes ces questions contiennent des enjeux conceptuels suffisamment profonds sur notre compréhension ultime de la matière, de l'espace et du temps pour justifier l'intérêt des talents qui s'investissent dedans. Mais ces physiciens sont handicapés par l'absence de données expérimentales qui guideraient la recherche. Le mécanisme de va et vient expérience-théorie mentionné dans l'introduction ne fonctionne plus : le Modèle Standard rend trop bien compte des phénomènes observés et observables pour que l'on puisse espérer raisonnablement que l'expérience nous guide efficacement dans le proche avenir. Mais à part des surprises dans le domaine (comme par exemple la découverte expérimentale de la supersymétrie), peut-être des percées viendront de façon complètement imprévue d'autres domaines de la physique, ou des mathématiques. Ce ne serait pas la première fois. Quelle que soit la direction d'où viennent ces progrès, il y a fort à parier que notre vision de la particule élémentaire en sera une fois de plus bouleversée. 
[1] Voir la 212e conférence de l’Université de tous les savoirs donnée par D. Treille.

 

VIDEO          CANAL  U             LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 ] Prcdente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google