ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

LE NOYEAU ATOMIQUE

  Auteur : sylvain Date : 23/02/2013
 

Paris, 18 juillet 2012

Le noyau atomique : liquide fissile ou molécule vitale ?
Une nouvelle vision unifiant les deux aspects noyau-liquide et noyau-molécule est révélée par une équipe de l'Institut de physique nucléaire d'Orsay (Université Paris-Sud/CNRS) et du CEA, en collaboration avec l'Université de Zagreb. En faisant l'analogie avec les étoiles à neutrons(1), les chercheurs ont mis en évidence, pour la première fois, l'une des conditions nécessaires à la formation, au sein du noyau atomique, de comportements moléculaires. Ces derniers permettent notamment de comprendre la synthèse des éléments indispensables à l'apparition de la vie. Ces travaux sont publiés dans Nature le 19 juillet 2012.
Le noyau atomique est généralement décrit comme une goutte de liquide quantique de l'ordre du millionième de milliardième de mètre de diamètre. Ce comportement de type liquide explique notamment la fission nucléaire, et s'applique préférentiellement aux noyaux lourds, c'est-à-dire ceux contenant beaucoup de nucléons (les neutrons et les protons). En revanche, les noyaux légers(2) peuvent se comporter comme de minuscules « molécules » - ou agrégats - composés de neutrons et de protons à l'échelle du noyau. Cet aspect moléculaire permet de comprendre la synthèse stellaire du carbone-12 ou d'éléments plus lourds, nécessaires à l'apparition de la vie(3).

Jusqu'à présent, les deux visions « noyau-molécule » et « noyau-liquide » co-existaient. Aujourd'hui, une équipe de l'Institut de physique nucléaire d'Orsay (Université Paris-Sud/CNRS) et du CEA, en collaboration avec des chercheurs de l'Université de Zagreb, livre une vision unifiée de ces deux aspects. En résolvant des équations de physique quantique à l'échelle du noyau (et notamment l'équation de Schrödinger), les chercheurs ont démontré que, si un noyau léger peut présenter un comportement de type moléculaire (qui tend vers l'état cristallin), il adopte, lorsqu'il s'alourdit, un comportement de type liquide. Pour établir cette nouvelle théorie, les physiciens se sont inspirés des étoiles à neutrons(1). Plus on s'enfonce à l'intérieur de ces étoiles, plus on passe d'un milieu cristallin à un milieu liquide. Grâce à cette analogie, les physiciens ont identifié un mécanisme de transition de l'état liquide vers l'état cristallin du noyau. Lorsque les interactions entre neutrons et protons ne sont pas assez fortes pour les fixer au sein du noyau, celui-ci est alors dans un état de type liquide quantique où neutrons et protons sont délocalisés. À l'inverse, dans un état cristallin, neutrons et protons seraient fixés à intervalles réguliers dans le noyau. La molécule nucléaire est interprétée comme un état intermédiaire entre le liquide quantique et le cristal. À long terme, il s'agit de comprendre de manière unifiée les différents états du noyau.

DOCUMENT                CNRS              LIEN

 
 
 
 

AUTISME 3

  Auteur : sylvain Date : 02/02/2013
 

Consortium sur l’autisme : Découverte de nouveaux gènes10 juin 2010


CP autisme 10 juin 2010 (116,9 ko)  

 


Cent soixante-dix-sept scientifiques, issus de plus de 60 institutions de 11 pays différents, présentent les résultats de la phase 2 du consortium international de recherche génétique sur l’autisme, Autism Genome Project. Ce groupe de chercheurs, parmi lesquels des scientifiques français, a découvert des mutations génétiques et de nouveaux gènes impliqués dans l’autisme. Ces travaux sont publiés dans la revue Nature du 10 juin 2010.
Le groupe de chercheurs internationaux a analysé le génome entier de 1000 personnes présentant des troubles liés à l’autisme et 1300 individus témoins à l'aide des micropuces ADN à haute résolution. Les scientifiques ont ainsi pu mettre en évidence des insertions et des suppressions de séquences génétiques, invisibles au microscope. Ces remaniements, appelés "variations du nombre de copies" ont permis d’identifier de nouveaux gènes impliqués dans l’autisme, notamment SHANK2, SYNGAP1, DLGAP2 et PTCHD1. Certains d’entre eux agissent au niveau des contacts entre les neurones (les synapses), tandis que d’autres sont impliqués dans la prolifération cellulaire ou encore la transmission de signaux intracellulaires. L’identification de ces voies biologiques offre de nouvelles pistes de recherche, ainsi que des cibles potentielles pour le développement de traitements originaux.

 

La nouvelle étude de l’Autism Genome Project a également démontré que les sujets atteints d'autisme tendent à avoir plus de "variations du nombre de copies" rares (détectées dans moins d’un pour cent de la population) touchant des gènes que les individus témoins. Certaines de ces mutations sont héritées, d’autres sont considérées comme "de novo" car elles apparaissent chez les patients et sont absentes chez leurs parents. Les chercheurs ont remarqué que chez les personnes autistes, un grand nombre de ces mutations tendent à perturber des gènes déjà associés à l’autisme ou aux déficiences intellectuelles.

Ces découvertes viennent appuyer un consensus émergent au sein de la communauté scientifique, selon lequel l’autisme serait provoqué en partie par de nombreuses « variations rares » ou des modifications génétiques détectées chez quelques sujets atteints. Les gènes identifiés par cette étude confortent aussi la voie synaptique identifiée par l’équipe de Thomas Bourgeron (Institut Pasteur, Université Denis Diderot) et Marion Leboyer (AP-HP, Inserm, Université de Paris-Est-Créteil, Fondation FondaMental). Alors que chacun de ces changements n'est observé que dans une petite partie des cas, l’ensemble de ces variations commence à représenter un pourcentage important de personnes atteintes d’autisme. "L’observation de gènes communs impliqués dans la prédisposition à l’autisme et dans des déficiences intellectuelles soutient l’hypothèse que différents troubles psychiatriques liés au développement du système nerveux partagent certains facteurs de risque génétique." précise Catalina Betancur, chargée de recherche à l’Inserm dans l’unité 952 "Physiopathologie des maladies du système nerveux central" (Inserm/CNRS/UPMC), et dernière auteure de la publication parue dans la revue Nature.

 

 

Autism Genome Project
Démarré en 2002, l’Autism Genome Project rassemble 177 scientifiques, issus de plus de 60 institutions de 11 pays différents, qui ont formé le plus grand consortium sur la génétique de l’autisme. Ce projet est né de la volonté des chercheurs du monde entier de se regrouper pour partager leurs échantillons, leurs données et leur expertise afin de faciliter l’identification des gènes impliqués dans l’autisme. Cette collaboration, avec un vaste ensemble d’échantillons et une expertise multidisciplinaire, a créé des opportunités qui n’existeraient pas autrement. Aujourd’hui, les chercheurs étudient plus en profondeur les variations rares, ce qui nécessite de plus grands ensembles d’échantillons afin d’identifier davantage de mutations génétiques. La première phase de l’Autism Genome Project, achevée en 2007, avait permis de rassembler la plus grande collection d’ADN sur l’autisme et de mettre en évidence l'importance des "variations du nombre de copies" dans cette pathologie. Ce projet est majoritairement financé par Autism Speaks, une organisation américaine qui soutient la recherche sur l'autisme.
Les équipes françaises
La partie française de cette étude a été pilotée par Catalina Betancur, qui dirige le groupe de recherche sur la Génétique de l'Autisme au sein du Laboratoire de Physiopathologie des maladies du système nerveux central (Inserm, CNRS, UPMC) à Jussieu. Ce travail est le fruit d’une collaboration datant de plus de 10 ans entre l’Institut Pasteur, l’AP-HP et l’Inserm pour chercher à identifier les facteurs de vulnérabilité génétique rencontrées chez les personnes atteintes d’autisme. Ce projet bénéficie, entre autres d’une promotion Inserm (Pôle Recherche Clinique, Institut Santé publique, C07-33). Ce consortium a permis dès 2003 l’identification des toutes premières mutations des gènes impliqués dans la mise en place des synapses dans l’autisme. Les travaux de ce consortium ont été renforcés depuis 2007 par le soutien de la fondation FondaMental, fondation de coopération scientifique créée par le ministère de la Recherche pour accélérer la recherche en psychiatrie.
A propos de l’autisme
L’autisme est un trouble neurobiologique complexe qui affecte la capacité d’une personne à communiquer et à établir des relations sociales. Il s’accompagne fréquemment de comportements répétitifs et d'intérêts restreints. Les troubles autistiques sont diagnostiqués chez un enfant sur 110 et touchent quatre fois plus de garçons que de filles. Les troubles du développement débutent en général avant l'âge de trois ans. Dans certains cas, l'autisme est associé à des maladies génétiques comme le syndrome de l'X fragile ou à des anomalies chromosomiques. Cependant, dans la majorité des cas, l'étiologie génétique précise demeure inconnue. Il n'y a pas de traitement curatif de l'autisme mais la prise en charge éducative précoce améliore le pronostic.

DOCUMENT         INSERM           LIEN

 
 
 
 

LES CELLULES DENDRITIQUES

  Auteur : sylvain Date : 29/01/2013
 

Le rôle insoupçonné des cellules dendritiques pour les vaisseaux HEV
Source : INSERM  Partager Une équipe de chercheurs vient de mettre en lumière le rôle fondamental des cellules dendritiques dans la fabrication des vaisseaux sanguins HEV. Une avancée qui permettra sûrement des applications dans le traitement des cancers et des maladies inflammatoires chroniques comme la polyarthrite rhumatoïde, l'asthme ou encore la maladie de Crohn.
Les cellules dendritiques, sentinelles du système immunitaire (découvertes en 1973 par Ralph Steinman, prix Nobel de médecine 2011), jouent un rôle essentiel dans le mécanisme de fabrication des vaisseaux sanguins HEV, véritables portes d’entrée des lymphocytes dans les ganglions lymphatiques, les tissus enflammés et les tumeurs cancéreuses. C’est ce que viennent de montrer Christine Moussion et Jean-Philippe Girard, chercheurs à l’Institut de pharmacologie et de biologie structurale (CNRS/Université Toulouse III - Paul Sabatier). Ces travaux ont été publiés en ligne par la revue Nature le 13 novembre 2011. Mieux connaître ces mécanismes pourrait conduire à des applications importantes pour le traitement des maladies inflammatoires chroniques et du cancer.
Afin de lutter contre les infections virales et bactériennes, les lymphocytes, globules blancs circulants dans le sang, s’acheminent vers les ganglions lymphatiques. Ils pénètrent dans les ganglions grâce à un type particulier de vaisseaux sanguins, appelés HEV. Ces vaisseaux HEV constituent des portes d’entrée très efficaces puisque l’on estime que dans l’organisme, à chaque seconde au moins 5 millions de lymphocytes entrent dans les ganglions via les vaisseaux HEV.

Un lymphocyte, vu par un microscope électronique à balayage. Les lymphocytes pénètrent dans les ganglions grâce aux vaisseaux HEV. Les chercheurs ont découvert que les cellules dendritiques jouent un rôle essentiel dans le mécanisme de fabrication de ces vaisseaux HEV. © Wikipédia, DP
Les cellules dendritiques, clé de la fabrication des vaisseaux HEV
Depuis plusieurs années, l’équipe de Jean-Philippe Girard, directeur de recherche Inserm, s’efforce de mieux comprendre comment un vaisseau sanguin normal se transforme en vaisseau HEV (et vice versa). En étudiant les cellules présentes au voisinage des vaisseaux HEV, les chercheurs toulousains viennent de mettre en évidence le rôle fondamental des cellules dendritiques dans la fabrication des vaisseaux HEV. Grâce à de longs prolongements, ces cellules de forme étoilée entrent en contact avec les vaisseaux sanguins afin de leur délivrer un signal indispensable à leur transformation en vaisseaux HEV. Sous l’action des cellules dendritiques, les vaisseaux sanguins qui constituaient une barrière infranchissable pour les lymphocytes deviennent alors capables de les faire entrer massivement dans les ganglions lymphatiques. Ce processus est un élément nécessaire à la surveillance immunitaire de l’organisme.
En effet, les cellules dendritiques connues comme les sentinelles du système immunitaire, sont chargées de collecter et de présenter les antigènes étrangers provenant de virus, de bactéries ou de cellules cancéreuses, aux lymphocytes T. En contrôlant aussi l’accès des lymphocytes aux ganglions via les vaisseaux HEV, les cellules dendritiques vont permettre la rencontre entre les lymphocytes et les antigènes étrangers contre lesquels ils sont dirigés. Les cellules dendritiques jouent ainsi un nouveau rôle essentiel dans le système immunitaire, rôle insoupçonné jusqu’alors.
Un espoir pour les maladies inflammatoires et les cancers
Les chercheurs ont également étudié les mécanismes mis en jeu dans le dialogue entre les cellules dendritiques et les vaisseaux HEV. Une meilleure connaissance de ces mécanismes pourrait avoir des applications importantes pour le traitement des maladies inflammatoires chroniques et du cancer.
En effet, des vaisseaux HEV apparaissent dans la plupart des maladies inflammatoires chroniques (polyarthrite rhumatoïde, maladie de Crohn, dermatite atopique, psoriasis, asthme…) et contribuent à l’inflammation du tissu. Bloquer la fabrication des vaisseaux HEV permettrait donc de diminuer l’inflammation. À l’inverse, dans le cancer, les vaisseaux HEV ont un effet bénéfique car ils facilitent l’entrée dans les tumeurs des lymphocytes tueurs.
Mieux comprendre les mécanismes de fabrication des vaisseaux HEV pourrait permettre d’augmenter la quantité de ces vaisseaux dans les tumeurs afin d’améliorer l’éradication des cellules cancéreuses par les cellules tueuses.

DOCUMENT         FUTURA-SCIENCES.COM           LIEN

 
 
 
 

LES CELLULES DENDRITIQUES...

  Auteur : sylvain Date : 19/01/2013
 

Paris, 10 novembre 2011

Les cellules dendritiques contrôlent la porte d'entrée des lymphocytes dans les ganglions lymphatiques
Les cellules dendritiques, sentinelles du système immunitaire (découvertes en 1973 par Ralph Steinman, Prix Nobel de Médecine 2011), jouent un rôle essentiel dans le mécanisme de fabrication des vaisseaux sanguins HEV, véritables portes d'entrée des lymphocytes dans les ganglions lymphatiques, les tissus enflammés et les tumeurs cancéreuses. C'est ce que viennent de montrer Christine Moussion et Jean-Philippe Girard (1), chercheurs à l'Institut de pharmacologie et de biologie structurale (CNRS/Université Toulouse III – Paul Sabatier). Ces travaux (2) sont publiés en ligne par la revue Nature le 13 novembre 2011. Mieux connaître ces mécanismes pourrait conduire à des applications importantes pour le traitement des maladies inflammatoires chroniques et du cancer.
Afin de lutter contre les infections virales et bactériennes, les lymphocytes, globules blancs circulants dans le sang, s'acheminent vers les ganglions lymphatiques (3). Ils pénètrent dans les ganglions grâce à un type particulier de vaisseaux sanguins, appelés HEV. Ces vaisseaux HEV constituent des portes d'entrée très efficaces puisque l'on estime que dans l'organisme, à chaque seconde au moins 5 millions de lymphocytes entrent dans les ganglions via les vaisseaux HEV. 

Depuis plusieurs années, l'équipe de Jean-Philippe Girard, directeur de recherche Inserm, s'efforce de mieux comprendre comment un vaisseau sanguin normal se transforme en vaisseau HEV (et vice versa). En étudiant les cellules présentes au voisinage des vaisseaux HEV, les chercheurs toulousains viennent de mettre en évidence le rôle fondamental des cellules dendritiques dans la fabrication des vaisseaux HEV. Grâce à de longs prolongements, ces cellules de forme étoilée entrent en contact avec les vaisseaux sanguins afin de leur délivrer un signal indispensable à leur transformation en vaisseaux HEV. Sous l'action des cellules dendritiques, les vaisseaux sanguins qui constituaient une barrière infranchissable pour les lymphocytes deviennent alors capables de les faire entrer massivement dans les ganglions lymphatiques. Ce processus est un élément nécessaire à la surveillance immunitaire de l'organisme.

En effet, les cellules dendritiques connues comme les sentinelles du système immunitaire, sont chargées de collecter et de présenter les antigènes étrangers provenant de virus, de bactéries ou de cellules cancéreuses, aux lymphocytes T. En contrôlant aussi l'accès des lymphocytes aux ganglions via les vaisseaux HEV, les cellules dendritiques vont permettre la rencontre entre les lymphocytes et les antigènes étrangers contre lesquels ils sont dirigés. Les cellules dendritiques jouent ainsi un nouveau rôle essentiel dans le système immunitaire, rôle insoupçonné jusqu'alors.

Les chercheurs ont également étudié les mécanismes mis en jeu dans le dialogue entre les cellules dendritiques et les vaisseaux HEV. Une meilleure connaissance de ces mécanismes pourrait avoir des applications importantes pour le traitement des maladies inflammatoires chroniques et du cancer. En effet, des vaisseaux HEV apparaissent dans la plupart des maladies inflammatoires chroniques (polyarthrite rhumatoïde, maladie de Crohn, dermatite atopique, psoriasis, asthme, …) et contribuent à l'inflammation du tissu. Bloquer la fabrication des vaisseaux HEV permettrait donc de diminuer l'inflammation. A l'inverse, dans le cancer, les vaisseaux HEV ont un effet bénéfique car ils facilitent l'entrée dans les tumeurs des lymphocytes tueurs. Mieux comprendre les mécanismes de fabrication des vaisseaux HEV pourrait permettre d'augmenter la quantité de ces vaisseaux dans les tumeurs afin d'améliorer l'éradication des cellules cancéreuses par les cellules tueuses.

DOCUMENT           CNRS           LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 ] Prcdente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solfège - Harmonie - Instruments - Vid�os - Nous contacter - Liens - Mentions légales / Confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google